Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела функции
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67554

К графикам функций y = cosx  и y =a tgx  провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого a⁄= 0  .

Источники: ММО-2023, 11.1 (см. mmo.mccme.ru)

Показать доказательство

Абсцисса x
0  любой точки пересечения графиков данных функций удовлетворяет равенства cosx = atg x
    0      0  . В этой точке касательная к графику функции y =cosx  имеет угловой коэффициент k1 = − sinx0  , а касательная к графику функции y = atg x  имеет угловой коэффициент     --a--
k2 = cos2x0  . Поскольку

         asinx0   a tgx0
k1⋅k2 = − cos2x0 = −-cosx0 =− 1

эти касательные перпендикулярны друг другу.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!