Многочлены на ИТМО
Ошибка.
Попробуйте повторить позже
Кубический многочлен имеет три корня. Наибольшее его значение на отрезке достигается при
, а наименьшее при
.
Найдите сумму корней многочлена.
Источники:
Пусть многочлен имеет вид , откуда его производная
.
Так как наименьшее и наибольшее значения достигаются во внутренних точках отрезка, то по необходимому условию экстремума
производная в этих точках равна нулю, так что имеет корни
и
, так что можно записать
По теореме Виета сумма корней многочлена равна
, а сумма корней многочлена
равна
, откуда
находим
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!