Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела итмо (открытка)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72124

Существует ли многочлен третьей степени такой, что все его корни положительны, а все корни его производной отрицательны, при условии, что и у многочлена, и у производной, есть хотя бы один единственный корень?

Источники: ИТМО-2019, 11.2 (см. rsr-olymp.ru)

Показать ответ и решение

У многочлена (x+ 1)3− 8  единственный корень x= 1  , а корень его производной x= −1.

Замечание. Как придумать пример? Рассмотрим  3
x  — самый простой многочлен третьей степени. Чтобы у него был положительный корень, отнимем положительную константу, возьмем  3
x − 8  . Сейчас производная равна       2
3(x+0)  и ее корень x =0  . Если же рассмотрим функцию, например,     3
(x+ 1) − 8  , получим корень производной, равный − 1.

Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!