Закл (финал) 10 класс
Ошибка.
Попробуйте повторить позже
На дугах и окружности, описанной около треугольника выбраны соответственно точки и так, что прямые и параллельны. Докажите, что центры вписанных окружностей треугольников и равноудалены от середины дуги
Источники:
Подсказка 1
Отметьте середины E и H меньших дуг BK и BL. Попробуйте поискать равные дуги, хорды. Соберите максимально много информации с чертежа.
Подсказка 2
Пусть M - середина дуги ABC, I и J - центры вписанных окружностей. Доказать равенство отрезков IM и MJ довольно проблематично. Но можно доказать равенство некоторых объектов, в которые они входят, из которых будет следовать их равенство.
Подсказка 3
Докажите равенство треугольников JHM и MEI. Для этого используйте всю информацию, которую собрали в подсказке 1.
Отметим точки – середины дуг (не содержащей ), (не содержащей ) и центры вписанных окружностей треугольников Ясно, что лежит на лежит на По лемме о трезубце, и
Из условия следует, что точка лежит на дуге не содержащей и Поскольку – середина дуги строго меньшей, чем то лежит между и на дуге не содержащей и Аналогично, лежит между и Угол тем самым, опирается на ту дугу которая содержит а – на содержащую Такие дуги равны, поэтому равны и углы.
Отметим, что поэтому как хорды, стягивающие равные дуги. Аналогично, Рассмотрим теперь треугольники и По доказанному, и Значит, треугольники равны, и в частности что и требовалось доказать.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!