Закл (финал) 11 класс
Ошибка.
Попробуйте повторить позже
В языке три буквы — Ш, У и Я. Словом называется последовательность из букв, ровно
из которых — гласные (то есть У или Я), а
остальные
— буква Ш. Какое наибольшее количество слов можно выбрать так, чтобы у любых двух выбранных слов хотя бы в одной из
позиций стояли гласные, причем различные?
Пример. Рассмотрим все слов, у которых начиная с
-ой все буквы Ш, а первые
— У или Я. Этот набор слов удовлетворяет
условию.
Оценка. Каждому из наших слов сопоставим
слов, заменяя каждую букву Ш, на У или Я (всеми возможными способами).
Заметим, что полученные
слов состоят из букв У и Я и попарно различны (для слов, полученных из одного и того же,
это ясно из построения, а для слов, полученных из двух разных, следует из условия). Таким образом,
и
______________________________________________________________________________________________________________________________________________________
Замечание. Оценку можно получить по-другому.
Способ 1. Подкинем монетку раз. Для каждого слова рассмотрим такое событие: при всяком
если на некоторой позиции
стоит
буква У, то при
-м подбрасывании выпала решка, а если буква Я, то орёл. Вероятность такого события равна
и они не совместные,
поэтому количество слов не больше чем
Способ 2. Пусть выбрано более слов. Присвоим каждому слову вес
Пусть первая буква у
слов У, у
слов — Я и
Удвоим веса всех слов с первой буквой У, и обнулим — с первой буквой Я. Далее посмотрим на вторую букву и т.д.
Опишем шаг рассмотрения
-ой буквы. Пусть
— сумма весов слов, у которых
-ая буква У,
— сумма весов слов, у
которых
-ая буква Я. Если
удваиваем веса у слов с
-й буквой Я и обнуляем — с
-й буквой У. Иначе —
наоборот. В результате таких операций сумма весов не уменьшается. После
операций сумма весов всех слов будет
больше
В каждом слове только
букв У или Я, поэтому вес каждого слова не больше
Значит, найдутся
два слова с одинаковыми весами. Тогда для них не найдется позиции, в которой у одного У, а у другого Я или наоборот,
противоречие.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!