Тема . Заключительный этап ВсОШ

Закл (финал) 11 класс

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела заключительный этап всош
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#77055

Многочлен P(x)  таков, что многочлены P (P (P(x)))  и P(P(x))  строго монотонны на всей вещественной оси. Докажите, что P(x)  тоже строго монотонен на всей вещественной оси.

Источники: Всеросс., 2018, ЗЭ, 11.1(см. olympiads.mccme.ru)

Показать доказательство

Первое решение. Предположим, что многочлен P (x)  не является монотонным. Тогда найдутся такие a⁄= b,  что P(a)= P(b),  а значит, и P(P(P (a))) =P(P(P(b))),  то есть P (P(P(x)))  не монотонен.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение. Так как многочлен P(P(x))  монотонен, то он обязан иметь нечётную степень, а тогда он принимает все вещественные значения.

Пусть a> b,  тогда найдутся такие числа xa  и xb,  что P (P (xa))= a,P (P (xb))= b.  Так как старший коэффициент многочлена P (P(x))  всегда положителен, то этот многочлен возрастает, поэтому xa > xb.

Если старший коэффициент многочлена P (x)  положителен, то многочлен P(P (P (x)))  возрастает; отсюда получаем, что P (P (P(xa)))> P(P(P(xb))),  то есть P(a)> P(b)  для любых a> b.  Если же старший коэффициент отрицателен, то, аналогично, P (P (P(xa)))< P(P(P(xb))),  откуда P (a)< P(b)  для любых a> b.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!