Тема . Математический анализ

.11 Неопределенный интеграл и первообразная.

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела математический анализ
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103367


Докажите, что если

∫
   f(x)dx = F(x) + C

то

∫               1
  f (ax + b)dx = --F(ax + b)+ C
                a

(при a ⁄= 0  конечно)

Показать ответ и решение


Действительно, пусть F(x)  - некоторая первообразная для f(x)  . Тогда

(1-F(ax + b))′ = 1(F (ax + b))′ = 1-(ax+ b)′F′(ax+ b) = 1-⋅a ⋅f(ax+ b) = f(ax + b)
 a              a              a                     a

Следовательно, функция 1F (ax + b)
a  будет являться первообразной для функции f (ax + b)  .

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!