Тема . БИБН (Будущие исследователи - будущее науки)

Тригонометрия на БИБНе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бибн (будущие исследователи - будущее науки)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103845

Решите уравнение 2cos4x− sin3x= 1  .

Показать ответ и решение

По основному тригонометрическому тождеству уравнение равносильно

      2  2    3
2(1− sinx) − sin x= 1

        2       2                    2
2(1− sinx) (1+ sinx) = (1 +sinx)(1− sinx+ sin x)

sinx= −1  либо

2(1+ sinx)(1− 2sinx+ sin2x)= 1− sinx+ sin2x

2− 4sinx +2sin2x +2sin x− 4sin2x+ 2sin3x= 1− sinx+ sin2x

1− sinx− 3sin2x+ 2sin3x= 0

1− 2sinx+ sinx− 2sin2x− sin2x+ 2sin3x =0

                   2
(1− 2sinx)(1+ sinx − sin x)= 0

sinx= 1
     2  либо sinx = −1±-√1+4.
        −2

В итоге после объединения решений с учётом области значений синуса подходят    1 1−√5
− 1;2;  2 .  Соответственно

⌊ x= − π + 2πn,n∈ ℤ
|    π 2
||| x= 65π+2πn,n∈ ℤ
|| x=  6 + 2π1−n√,n5-∈ℤ
⌈ x= arcsin  2 1−+√25πn,n∈ ℤ
  x= π− arcsin  2  +2πn,n∈ ℤ
Ответ:

 π      π      5π          1-− √5             1−√5-
− 2 + 2πn;6 + 2πn; 6 +2πn;arcsin  2  + 2πn;π− arcsin  2  + 2πn;  n∈ ℤ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!