Тема . Треугольники с фиксированными углами

Нетабличные углы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники с фиксированными углами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49013

Про пятиугольник ABCDE  известно, что

                        0            0
AB = BC = CD = DE,∠B = 96 ,∠C = ∠D = 108 .

Найдите ∠E.

Подсказки к задаче

Подсказка 1

У нас есть много равных отрезков, а значит, равнобедренных треугольников! Какие из них наиболее выгодно рассмотреть?

Подсказка 2

Часто в самых разных задачах по математике выгодно придерживаться некоторой симметрии. У нас точки C и D как бы равноправны, поэтому давайте рассмотрим равнобедренные треугольники EDC и BCD и посчитаем их углы.

Подсказка 3

Теперь можно продолжить считать разные углы на картинке, пока не заметим что-нибудь интересное. Посчитайте все углы треугольников AFD и BFC (F - точка пересечения EC и BD). Что вы замечаете?

Подсказка 4

Эти треугольники равнобедренные! А значит, у нас ещё больше равных отрезков и где-то на картинке скрывается равносторонний треугольник...

Подсказка 5

Треугольник ABF оказывается равносторонним, и это помогает нам добраться до угла E!

Показать ответ и решение

PIC

Давайте пересечем CE  и BD  в точке F  .                180∘−∠C-   ∘
∠BDC  = ∠DBC =    2   =36 из равнобедренности DCB  . Аналогично,                 ∘
∠ECD  =∠CED  = 36 . Тогда          ∘
∠BF C = 72 и из этого следует, что          ∘
∠BCF = 72 . Значит, BF = BC  . Аналогично, EF = ED  .

PIC

Теперь посчитаем                        ∘
∠ABF  =∠ABC  − ∠DBC =60 . Значит, AF = AB =BF = EF  . Отсюда следует, что          ∘
∠AF E =48 ,         ∘
∠AEF = 66 ,                      ∘
∠E = ∠AEC + ∠CED = 102 .

Ответ:

 102∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!