Нетабличные углы
Ошибка.
Попробуйте повторить позже
Дан равнобедренный треугольник с углом при вершине, равным . Точка расположена внутри треугольника так, что , а . Найдите величину угла .
Подсказка 1
У нас есть три пересекающиеся в одной точке(хоть и не продолженные до пересечения со сторонами) чевианы, а значит, мы можем записать тригонометрическую теорему Чевы. Но вот загвоздка, нам надо будет решать тригонометрическое уравнение вида sin(114 - x) * a = b * sinx, где a и b - некоторые константы. Но если, скажем, мы хотим просто угадать корень, то какие претенденты есть?
Подсказка 2
Вот у нас там будут константы в числителе sin3 * sin27, а в знаменателе sin30 * sin6. Ну как будто хотелось бы не расписывать громоздко sin27, чтобы не портить произведение, при этом как-то
Первое решение.
Пусть — высота/медиана/биссектриса треугольника. Пусть — пересечение луча и отрезка .
Заметим, что (поскольку в треугольнике медиана совпала с высотой).
Посчитаем углы: 1. ; 2. ; 3. ; 4. ; 5. , а значит ; 6. , а значит .
Треугольники и равны по общей стороне и двум углам (пункты 5. и 6.) Следовательно, , треугольник равнобедренный. Значит,
________________________________________________________________________________________
Второе решение.
Несложно посчитать, что . Докажем, что , а . Для этого воспользуемся тригонометрической формой теоремы Чевы. В соответствии с этой теоремой нам достаточно проверить, что
или . Это очевидно:
Осталось лишь вычислить из треугольника .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!