Тема ТурЛом (турнир Ломоносова)

Тождественные преобразования и функции на Турломе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела турлом (турнир ломоносова)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#119819

Про действительные числа a,b,c,d  известно, что

ab =cd= 2025,  a+c =b+ d, a+ b⁄= c+ d

Чему может быть равно значение a +b+ c+d?

Источники: Турнир Ломоносова - 2025, 11.1(см. turlom.olimpiada.ru)

Показать ответ и решение

Поскольку a+ c=b+ d,  то a− b= d− c.  Отсюда

     2      2
(a − b) = (d− c)

 2  2       2   2
a + b− 2ab= c+ d − 2cd

Так как ab= cd,  добавим к обеим частям равенства 4ab:

a2+b2− 2ab+ 4ab= c2+ d2− 2cd+ 4ab= c2+ d2− 2cd+ 4cd

a2+ b2+ 2ab= c2+ d2+ 2cd

(a +b)2 = (d+ c)2

|a +b|= |d+ c|

По условию a+ b⁄= c+d,  поэтому

a+ b= −c− d

Итак,

a+ b+ c+d =− c− d +c+ d= 0
Ответ:

Только 0

Ошибка.
Попробуйте повторить позже

Задача 2#93344

Пусть f(x)= |x− 1|.

Решите уравнение

f(f(f(...(f(x))...)))= 0

(буква f  написана 2021  раз).

Источники: Турнир Ломоносова - 2021, 11.1 (см. turlom.olimpiada.ru)

Показать ответ и решение

Обозначим f(f(f(...(f(x))...))),  где буква f  написана k  раз, за f(k)(x)  .

Докажем, что корнями уравнения (k)
f (x)= 0  , являются числа − k+ 2,− k+ 4,...,k − 2,k.  Доказывать будем индукцией по числу k.

Если k= 1,  то корнями f(x)= 0  является только число 1  , что и требовалось.

Пусть мы уже доказали, что корнями  (k)
f  (x)= 0  являются числа − k+ 2,  − k+ 4,...,k− 2,k.  Заметим, что  (k+1)     (k)
f    (a)= f  (f(a));  то есть, для того, чтобы a  было корнем уравнения  (k+1)
f   (x)= 0  необходимо и достаточно, чтобы f(a)  было корнем уравнения  (k)
f  (x)= 0.

Значит, f(a)  должно равняться одному из чисел − k+ 2,− k+ 4,...,k− 2,k,  т.е. расстояние от a  до 1 должно равняться k,k− 2,...  А это и есть числа 1±k,1± (k − 2),...,  т.е. числа − k +1,− k +3,...,k− 1,k+ 1.  Переход доказан.

Ответ:

− 2019,− 2017,...,− 1,1,3,...,2021

Ошибка.
Попробуйте повторить позже

Задача 3#94423

Среди чисел a,b,c  есть два одинаковых. А оставшееся число — другое. Составьте такое арифметическое выражение из букв a,b,c,  знаков +,  −,×,:  и скобок, чтобы в результате вычислений получилось это число. (Скобки, знаки и буквы можно использовать любое количество раз.)

Показать доказательство

Например, подойдёт такой вариант (b= c):

a(a− b)(a-− c)+-b(b−-a)(b− c)+-c(c−-a)(c− b)
 (a− b)(a− c)+ (b − a)(b− c)+(c− a)(c− b)
Рулетка
Вы можете получить скидку в рулетке!