Тема . Уравнения в целых числах

Уравнения на НОД и НОК

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#84806

Найдите все пары натуральных m, n  , таких, что

НО Д(m, n)=2015!, a НОК (m,n)= 2016!

Замечание.

Пары (m,n)  и (n,m)  считаются как одна пара.

Подсказки к задаче

Подсказка 1

Давайте сначала посмотрим на НОД(m, n), что мы тогда можем сказать про сами m, n?

Подсказка 2

Верно, они оба делятся на 2015! А что тогда нам говорит НОК(m, n)?

Подсказка 3

Да, то, что между m, n раскиданы как-то степени простых чисел, произведение которых равно 2016. Остаётся только перебрать все такие варианты, не забывая о том, что ничего общего между m, n, кроме 2015!, нет, и радоваться победе над задачей!

Показать ответ и решение

Обозначим d= НОД (m,n) =2015!,  тогда

m =dk, n =dl,

где НОД(k,l)= 1  и НОК (k,l)= 2016,  то есть

          5 2
kl=2016= 2 ⋅3 ⋅7

Распределяя простые множители между k  и l,  получаем всевозможные пары.

Ответ:

 (2015!,2016!),(2015!⋅25,2015!⋅32⋅7),(2015!⋅32,2015!⋅25 ⋅7),(2015!⋅7,2015!⋅25⋅32)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!