Уравнения на НОД и НОК
Ошибка.
Попробуйте повторить позже
Найдите количество троек натуральных чисел , удовлетворяющих системе уравнений
Источники:
Подсказка 1
Из второго условия системы мы понимаем, что единственными простыми делителями чисел a, b, c могут быть лишь 2 и 3. Тогда можем представить эти числа как произведение степеней 3 и 2(a=2^α₁ * 3^α₂, b=2^β₁ * 3^β₂, c=2^γ₁ * 3^γ₂). Как тогда можно перезаписать условие системы через новые переменные?
Подсказка 2
С новыми переменными мы получаем, что max(α₁, β₁, γ₁) = 15, min(α₁, β₁, γ₁) = 1, max(α₂, β₂, γ₂) = 16, min(α₂, β₂, γ₂) = 1. Отлично! Теперь можно отдельно рассмотреть условия на α₁, β₁, γ₁ и условия на α₂, β₂, γ₂. Затем найти кол-во подходящих троек в каждом случае и, перемножив, получить ответ.
Подсказка 3
Для условий на α₁, β₁, γ₁, имеем, что какое-то из чисел равно 15, второе равно 1, а третье является любым целым числом от 1 до 15 включительно. Осталось только перебрать варианты наборов чисел и сложить кол-во случаев в них. Аналогично для α₂, β₂, γ₂.
Пусть (никаких других простых множителей числа , содержать не могут - иначе нарушается второе условие системы). Отсюда
Учитывая данную в условии систему, получаем соотношения
Рассмотрим первую систему . Возможны следующие наборы чисел :
набора (за счёт различных перестановок этих чисел);
— также три набора;
, где есть различных значений и для каждого из них перестановок — всего вариантов.
Итак, есть способа выбрать тройку чисел . Аналогично устанавливаем, что для выбора есть ( — значений) способов. И поскольку один выбор осуществляется независимо от другого, то общее количество способов равно .
Найдено количество троек для степеней одного из простых чисел только в одном случае – 2 балла.
Получено одно или оба соотношения вида {︃ max (𝛼1; 𝛽1; 𝛾1) = 𝑘, min (𝛼1; 𝛽1; 𝛾1) = 1 и {︃ max (𝛼2; 𝛽2; 𝛾2) = 𝑚, min (𝛼2; 𝛽2; 𝛾2) = 1. и других продвижений нет – 1 балл за задачу (этот балл не суммируется с указанным выше).
Неарифметическая (комбинаторная) ошибка (вместо правила произведения применено правило суммы, некоторые случаи посчитаны дважды или пропущены и т.п.) – не более 1 балла за задачу.
Неверно решена «числовая часть» (из условия сделаны неверные выводы, например, утверждается, что одно из чисел должно равняться произведению 𝑝^𝑚𝑎𝑥 𝑞^𝑚𝑎𝑥 или 𝑝𝑞; используются неверные утверждения, например, НОД(𝑎, 𝑏, 𝑐) НОК(𝑎, 𝑏, 𝑐) = 𝑎𝑏𝑐) – 0 баллов за задачу.
Ошибка.
Попробуйте повторить позже
Найдите пары натуральных чисел и , для которых выполняется равенство:
В качестве ответа введите все возможные значения через пробел в порядке возрастания.
Источники:
Подсказка 1
Вспомним равенство mn = НОД(m,n) * НОК(m,n). Тогда пусть НОК(m,n) = x, НОД(m,n) = y. Теперь наше уравнение свелось к уравнению относительно x и y в целых числах. Какие решения оно может иметь?
Подсказка 2
После преобразований у нас получится уравнение 7x - 14y - 5xy = 0. Попробуйте разложить его на множители так, чтобы в правой части осталось целое число!
Подсказка 3
Уравнение можно записать в виде x(7 - 5y) - 14y = 0. Теперь у первого слагаемого есть скобочка. Попробуйте такую же получить и у второго!
Подсказка 4
Если умножить уравнение на 5, то получится 5x(7 - 5y) + 14 * (-5y) = 0. Теперь добавим с обеих сторон 14 * 7. Получается (7-5y)(5x+14) = 14*7. Какие решения имеет это уравнение?
Как известно,
Для удобства введем обозначения:
Так как , то
Исходное уравнение примет вид:
следовательно, и, значит, Поскольку то это возможно лишь при
В таком случае,
Следовательно, Что означает, что числа взаимно простые и возможны две ситуации: или
Ошибка.
Попробуйте повторить позже
Найдите количество пар натуральных чисел , каждое из которых меньше миллиона, удовлетворяющих равенству
Подсказка 1
Тут главное — вспомнить, что такое НОК! Это наименьшее общее кратное чисел, НОК(x, y) ⋮ x, ⋮ y. А нам хотелось бы наоборот понять, какими свойствами обладают числа a и b, можем ли записать какое-то выражение с их помощью, которое будет делиться на НОКи в левой и правой части?
Подсказка 2
Ага, можем записать произведение a(b+1) к примеру! Оно будет делиться на НОК(a, b+1), а на что ещё? Аналогично можно составить ещё одно произведение из правой части.
Подсказка 3
Выходит, что a(b + 1) ⋮ b, ⋮ (a+3), в каких случаях такое может быть? И ещё выходит, что b(a+3) ⋮ a, ⋮ (b+1). Разберите все возможные варианты и поймите, какими свойствами обладают a и b!
Подсказка 4
После того как определили, как а выражается через b, можно подставить это в изначальное равенство на НОКи и подумать, когда оно возможно. Так там будут встречаться тройки, можно подумать про этот модуль. И найти количество подходящих пар!
Заметим, что делится на НОК , который равен НОК и в свою очередь делится на . Также делится на НОК , а последнее выражение делится на , поэтому делится на . Значит, либо , либо . В первом случае получаем
следовательно, делится на . Таким образом, есть делитель 6 , откуда — увы, эта пара чисел не удовлетворяет уравнению. Во втором случае, получаем
Если кратно 3 , то левая часть делится на большую степень тройки, чем правая. Если кратно 3, то правая часть делится на большую степень тройки, чем левая. Если же дает при делении на 3 остаток 1 , то обе части равны . Итак, требуется найти количество натуральных чисел , таких что . Их ровно 111111.
Ошибка.
Попробуйте повторить позже
Найти все пары натуральных чисел и таких, что их наименьшее общее кратное равно
В качестве ответа введите все возможные значения через пробел в порядке возрастания.
Источники:
Подсказка 1
Из условия следует, что 1+3y делится на x, а 1+2x делится на y. Кажется, что это может дать нам неплохие оценки на x и y...
Подсказка 2
Пускай для начала 1<x≤y. Из делимости 1+3y на x следует, что 1+2x=ky. Если k>2, то x>y. Тогда k=1 или k=2. Какой из случаев не реализуется?
Подсказка 3
При k=2, 1+2x должно делится на 2, что неверно. Тогда 1+2x=y ⇒ 4+6x делится на x. Следовательно, x надо искать среди делителей 4. Пускай теперь x>y>1. Что мы можем сказать про k, где 1+3y=kx?
Подсказка 4
Верно, k<4! При этом k не может равняться 3. Если k=2, то 1+3y=2x ⇒ y=2t+1, x=3t+2. При этом 1+2x=6t+5 должно делится на 2t+1. Посмотрите на НОД(6t+5, 2t+1) и разберитесь со случаем k=1!
Пусть сначала Заметим, что не может делиться на иначе наименьшее общее кратное и равно а это меньше В частности,
Далее, наименьшее общее кратное и делится на и поэтому делится на и а значит делится на и делится на Из делимости на следует что вместе с предположением влечёт Тогда из делимости на и следуют делимость 4 на и возможности Проверка показывает, что решением в этом случае является
Теперь рассмотрим случай из делимости на следует или Если то делится на тогда делится на и является решением задачи.
Если то нечётно, Тогда должно делиться на значит делится на что невозможно.
Ошибка.
Попробуйте повторить позже
Найти все натуральные числа , которые можно представить в виде суммы
для некоторых натуральных чисел и
Здесь и обозначают наибольший общий делитель и наименьшее общее кратное чисел и соответственно.
Подсказка 1
Нам хочется что-то понять про число n, поэтому разумно будет попытаться разложить правую часть на множители. С изначальным условием не очень удобно совершать тождественные преобразования. Давайте обозначим НОД(x, y)=d, тогда x=ad, y=bd и как раскладывается правая часть?
Подсказка 2
Верно, n=d(a+1)(b+1)! Как мы понимаем, нам подходят любые d, a и b, удовлетворяющие условию НОД(a, b)=1. При каком b это условие всегда выполнено?
Подсказка 3
Верно, при b=1! Это означает, что любое n вида 2d(a+1) нам подходит. Поэтому появляется предположение о том, что любое четное число, большое 2, нам подойдет. Осталось доказать, что если n раскладывается, то оно обязательно должно быть четным...
Подсказка 4
Так как НОД(a, b)=1, то одновременно a и b делится на 2 не могут. Используйте это и завершите решение!
Первое решение.
Если оба числа и одной четности, то все четыре слагаемых и имеют ту же четность и их сумма четна. Если они имеют разную четность, то нечетно, а четно, потому в сумме будет два четных и два нечетных числа и она снова будет четна. Каждое ее слагаемое не меньше одного, поэтому вся сумма не меньше Следовательно, ответом задачи может быть только четное число больше двух.
С другой стороны, для произвольного четного положив получим и откуда — представляется в требуемом в условии виде.
Второе решение.
Если обозначить то
где взаимно просты, значит, одно из них обязательно нечетно. Тогда
где обе скобки не меньше и одна из них обязательно четна. Следовательно, ответом задачи может быть только четное число, большее двух. Далее все как в первом решении.
Ошибка.
Попробуйте повторить позже
Найдите все такие натуральные числа , для которых выполнено условие:
Введите все возможные варианты в порядке возрастания через пробел.
Подсказка 1
Вспомним равенство НОД(a,b) * НОК(a,b) = ab, которое верно для любых целых чисел. Какие решения может иметь система НОД(a,b) + НОК(a,b) = a + b, НОД(a,b) * НОК(a,b) = ab?
Подсказка 2
Верно! НОД(a,b) = a и НОК(a,b) = b или НОД(a,b) = b и НОК(a,b) = a. Каким эквивалентным условием можно заменить эти условия?
Подсказка 3
НОД(a,b) = a, НОК(a,b) = b <=> b делится на a. Ясно, что может быть реализован только вариант b = n^3 + 2, a = n - 2. При каком условии b делится нацело на a?
Подсказка 4
Верно! Тогда и только тогда, когда неполное частное (n^3+2)/(n-2) является целым числом. Найдите все такие n!
Обозначим Тогда уравнение запишется в виде НОД НОК Напишем еще одно соотношение, верное для любых целых и Получим систему
Очевидно, что решением этой системы может быть только
Поскольку НОК всегда не меньше НОДа, второй случай невозможен. Остается , что равносильно тому, что делится на
Из этого равенства видно, что будет делиться на тогда и только тогда, когда является делителем
Ошибка.
Попробуйте повторить позже
Найдите все пары натуральных , таких, что
Замечание.
Пары и считаются как одна пара.
Подсказка 1
Давайте сначала посмотрим на НОД(m, n), что мы тогда можем сказать про сами m, n?
Подсказка 2
Верно, они оба делятся на 2015! А что тогда нам говорит НОК(m, n)?
Подсказка 3
Да, то, что между m, n раскиданы как-то степени простых чисел, произведение которых равно 2016. Остаётся только перебрать все такие варианты, не забывая о том, что ничего общего между m, n, кроме 2015!, нет, и радоваться победе над задачей!
Обозначим тогда
где и то есть
Распределяя простые множители между и получаем всевозможные пары.
Ошибка.
Попробуйте повторить позже
Для каких натуральных уравнение
имеет целые решения?
Источники:
Подсказка 1
По сути перед нами квадратное уравнение относительно х, но со странными коэффициентами. Подумайте, как можно в явном виде определить эти коэффициенты.
Подсказка 2
Да, мы можем определить эти коэффициенты только по остатку от y при делении на 12. То есть нужно перебрать 12(на самом деле меньше вариантов), получить квадратное уравнение и решить задачу(но главное-правильно записать ответ, ведь мы берем только остаток, и а y может быть и другим)
Заметим, что , обе принадлежности определяются остатком по модулю . Разберём случаи
- . Получаем уравнение , которое имеет целые корни . Этому случаю удовлетворяют остатки .
- . Получаем уравнение , которое целых корней не имеет.
- . Получаем уравнение , которое целых корней не имеет.
- . Получаем уравнение , корней нет.
- . Получаем уравнение , корней нет.
- . Получаем уравнение , корней нет.
Ошибка.
Попробуйте повторить позже
Найдите натуральные числа , для которых
Источники:
Подсказка 1
Попробуйте поподстовлять достаточно большие n в это уравнение и что-то заметить. Какая часть уравнения выбивается и почему?
Подсказка 2
Давайте посмотрим на выражение. Видно, что слева что-то очень большое, как минимум потому, что НОК(n,n^2+15)-это что-то (по примерным оценкам) точно большее квадрата(если мы оцениваем в общем виде), да еще, к тому же, НОК(n,n+3)-это тоже что-то большое, так как их максимальный НОД это 3(их разница делится лишь на 1 и 3). Значит, в задаче используется оценка. Подумайте как оценить каждый НОК
Подсказка 3
Любой НОК(a,b)>=max(a,b). Зная это, каждый из НОК-ов оценивается понятно, и произведение НОК-ов - кубическая функция. Но при этом квадратная ее больше или равна. Часто ли такое случается?
Подсказка 4
Ну конечно же, не часто. Потому что рано или поздно кубическая функция станет больше квадратичной. И это происходит только при n<=5. Осталось перебрать и получить ответ.
Воспользуемся очевидным неравенством . Отсюда следует
Заметим, что , то есть функция монотонно возрастает. Поскольку при имеем , то . Заметим также, что один из НОК-ов должен делиться на , что не выполняется при , поэтому остаётся перебрать два случая
- . Получаем .
- . Получаем .
решений нет