Тема Звезда (только часть с задачами по математике)

Теория чисел на Звезде

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела звезда (только часть с задачами по математике)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#75750

В бесконечной последовательности цифр 2,0,1,9,...  каждая цифра, начиная с пятой, равна последней цифре суммы предшествующих четырёх цифр этой последовательности. Встретятся ли в этой последовательности:

(a) подряд числа 4,3,2,1  ;

(b) вторично четвёрка 2,0,1,9  (в этом же порядке)?

Источники: Звезда - 2021, 11.4 (см. zv.susu.ru)

Показать ответ и решение

a) Последовательность начинается с 2,0,1,9,...  , рассмотрим остатки цифр при делении на два. Так как каждая цифра, начиная с 5  -ой, равна последней цифре суммы 4  предыдущих (т. е. она той же четности, что и сумма 4  предыдущих), то остатки изменяются следующим образом 0,0,1,1,0,0,0,1,1,0,...  . Так как цифра определяется однозначно по 4  предыдущим, то заметим, что в последовательности остатков возникает период (0,0,1,1,0)  .

Но тогда подряд числа 4,3,2,1  не могли встретиться, их остатки при делении на 2  равны 0,1,0,1  соответственно, а такой подпоследовательности нет в периодической последовательности остатков с периодом (0,0,1,1,0)  .

b) Различных четверок подряд идущих цифр конечное число, при этом цифра определяется однозначно по 4  предыдущим. Тогда исходная последовательность цифр периодична.

Также по четырём рядом стоящим цифрам abcd  однозначно определяется предшествующая им цифра: это единственная цифра, сравнимая по модулю 10  с -- --
d,a,b,c.  Тогда у последовательности нет предпериода, иначе бы предпериод x1,x2,...,xm  - совпадал с несколькими последними цифрами периода y1,y2,...,yn  , но тогда просто был неправильно выбран период, нужно было взять период x1,x2,...,xm,y1,y2,...,yn−m  и тогда не было бы предпериода.

Ответ:

a) нет

b) да

Ошибка.
Попробуйте повторить позже

Задача 2#49163

По кругу записаны 2019  чисел. Для любых двух соседних чисел x  и y  выполняются неравенства |x− y|≥ 2,x +y ≥6  . Найдите наименьшую возможную сумму записанных чисел.

Источники: Звезда - 2019 (см. zv.susu.ru)

Показать ответ и решение

Всего чисел нечётное количество, поэтому найдутся такие три подряд идущих числа x,y,z  , что x ≥y ≥z  . Тогда y− z ≥ 2,y+ z ≥ 6  , откуда y ≥ 4  . Отсюда x≥ y+ 2≥ 6  , то есть хотя бы одно из чисел не меньше 6  . Остальные разбиваем на пары (в каждой паре сумма не меньше 6  ) и получаем, что сумма чисел по всему кругу не меньше 6+1009⋅6= 6060  .

В качестве примера рассмотрим последовательность

...4,2,6,4,2,4,2,4,2,4,2...
Ответ:

 6060

Рулетка
Вы можете получить скидку в рулетке!