Теория чисел на Звезде
Ошибка.
Попробуйте повторить позже
По кругу записаны чисел. Для любых двух соседних чисел
и
выполняются неравенства
. Найдите
наименьшую возможную сумму записанных чисел.
Источники:
Подсказка 1
Попробуйте подумать над задачей, если бы кол-во чисел было бы четным. Как тогда можно было бы оценить сумму?
Подсказка 2
Верно, можно было просто оценить по парам. А как нам оценить нечетное кол-во чисел? Думается, сначала как-то выделить подгруппу нечетного кол-ва чисел, а потом , также как с четными кол-вом до этого, оценить. Но сколько надо взять чисел на оценку? Одно, кажется, вообще непонятно как оценивать. А вот три?
Подсказка 3
Скажем, если бы нашлись три подряд идущих числа x,y,z : x>=y>=z , то что бы это дало? Как бы мы могли оценить такую тройку чисел?
Подсказка 4
Да, мы могли бы сказать, что y-z>=2 , y+z>=6 => y>=4. Однако, так же можно оценить x>=y+2>=6 , но при этом y+z>=6, значит x+y+z>=12. То есть, сумма чисел в этой тройке хотя бы 12. И также, мы можем оценить по парам остальные числа(которых четное кол-во). Но остается один вопрос, а правда, что найдутся три таких подряд идущих числа, что x>=y>=z?
Подсказка 5
Да, это правда, в силу нечетности кол-ва чисел(если у вас сходу не нашлось такой пары, это значит, что числа как бы чередуются : сначала большое, потом маленькое, большое, маленькое и тд. Но вот это чередование(так как числа по кругу) оно рано или поздно сойдется и на стыке нельзя будет чередовать, если чисел нечетное кол-во). Значит, оценка есть, осталось привести пример(который строится по этой оценке).
Всего чисел нечётное количество, поэтому найдутся такие три подряд идущих числа , что
. Тогда
,
откуда
. Отсюда
, то есть хотя бы одно из чисел не меньше
. Остальные разбиваем на пары (в каждой паре сумма не
меньше
) и получаем, что сумма чисел по всему кругу не меньше
.
В качестве примера рассмотрим последовательность
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!