Тема . ДВИ по математике в МГУ

Планиметрия на ДВИ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дви по математике в мгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#64471

Две окружности касаются внутренним образом в точке T  . Хорда AB  внешней окружности касается внутренней окружности в точке   S  . Прямая TS  пересекает внешнюю окружность в точках T  и C  . Найдите площадь четырёхугольника T ACB  , если известно, что CB = BT = 3  , а радиусы окружностей относятся как 5:8.

Источники: ДВИ - 2016, задача 5 (pk.math.msu.ru)

Показать ответ и решение

PIC

Обозначим через X  и Y  точки пересечения внутренней окружности с отрезками AT  и BT  соответственно.

Проведём общую касательную окружностей в точке T.  Тогда угол между касательной и хордой большей окружности BT  равен углу BAT  и тот же угол между касательной и хордой TY  меньшей окружности равен углу YTX.

∠BAT = ∠YXT, ∠BTA = ∠YTX   =⇒

△BAT ∼ △Y XT  =⇒   AT-= AX-
                   BT   BY

Применяя теорему о касательной и секущей, получаем

AS2-= AX-⋅AT-= AT2,
BS2   BY ⋅BT   BT2

то есть,

AS-  AT-
BS = BT,

что в силу обратной теоремы о биссектрисе означает, что ∠ATS = ∠BTS  . Но из равенства CB = BT  следует, что

∠CT B =∠T CB,

стало быть, AT∥CB  , то есть четырёхугольник TACB  - трапеция, причём вписанная, то есть равнобокая. Значит, AC = CB = BT =3  .

Далее, треугольники ATS  и BCS  подобны с коэффициентом подобия T S∕CS = = 5∕(8− 5)=  5/3. Следовательно, AT = 5  , а средняя линия трапеции TACB  равна 4. Высота же трапеции равна катету прямоугольного треугольника с гипотенузой 3 и другим катетом 1 , то есть равна √ -
2 2  . Таким образом, искомая площадь равна    √-   √ -
4⋅2 2 =8  2  .

Ответ:

 8√2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!