Планиметрия на ДВИ
Ошибка.
Попробуйте повторить позже
Окружность радиуса 2 с центром на основании равнобедренного треугольника касается его боковых сторон. Одну из точек касания соединили отрезком с противолежащей вершиной основания. Этот отрезок делится высотой треугольника, проведенной к основанию, в отношении 4 : 3, считая от вершины. Найти площадь треугольника.
Источники:
Подсказка 1
Окружность касается боковых сторон треугольника, получается, что она вписана в его угол. Что можно сказать о положении центра этой окружности — на какой линии он будет лежать?
Подсказка 2
Рассмотрим треугольник △ACР (пусть Р - точка касания окружности со стороной СВ р/б треугольника △AВС с основанием АВ, О – центр нашей окружности, а Т – точка пересечения СО и АР) Нам известно, в каком отношении биссектриса угла треугольника делит его противоположную сторону. Какое свойство поможет нам узнать отношение двух сторон такого треугольника?) Поскольку АС=ВС, мы можем понять, в каком отношении точка Р делит сторону ВС.
Подсказка 3
Радиус, проведённый в точку касания перпендикулярен касательной! Рассмотрите треугольник △СОВ, образованный медианой, половинкой основания и боковой стороной исходного треугольника. Он прямоугольный, с известной высотой и известным отношением отрезков, на которые эта высота делит гипотенузу — этих данных достаточно, чтобы узнать все его стороны (работа с подобием поможет в этом!)
Подсказка 4
Теперь мы знаем высоту и половинку основания р/б треугольника. Несложные вычисления доведут нас до ответа :)
Пусть это треугольник ,
— середина основания,
— точки касания с
,
Поскольку является биссектрисой первоначального треугольника, то она же будет биссектрисой
, откуда
, тогда
. Из подобия
имеем
Наконец, из подобия получаем
В итоге площадь равна
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!