Тема . МВ / Финашка (Миссия выполнима. Твоё признание — финансист!)

Теория чисел на МВ (Финашке)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист!)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76732

На доске написаны все натуральные числа от 1  до 100.  Можно любую пару чисел x,y  заменять на xy − 29x− 29y +870.  Какое число останется после 99  таких операций?

Подсказки к задаче

Подсказка 1

Сходу непонятно, почему при изменении порядка произведения операций в итоге должно остаться одно и то же число. Скорее всего наша операция устроена как-то хитро. Вас не смущает какой-то намек на число 29?

Подсказка 2

Наша операция как-то сильно связана с числом 29. Может, при подстановке 29 будет что-то интересное. Попробуйте подставить пару (a, 29) и посмотреть, что получится...

Подсказка 3

Хммм... При такой подстановке функция выдает значение 29. Очевидно, что и при подстановке пары (29, а) значение будет также равняться 29. Какое же тогда число скорее всего останется в конце?

Подсказка 4

Верно, 29! Ведь если сейчас на доске есть число 29, то после применения операции оно также останется на доске. Т.к. изначально оно присутствует, то и в конце тоже.

Показать ответ и решение

Заметим, что xy− 29x− 29y+870= (x− 29)(y − 29)+29  . Если одно из пары заменяемых чисел x,y  равно 29  , то эта пара чисел заменяется на 29  . Следовательно, на доске всегда одно из чисел будет равно 29  . Именно это число останется после 99  рассматриваемых операций.

Ответ: 29

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!