Тема . МВ / Финашка (Миссия выполнима. Твоё признание — финансист!)

Функции, многочлены и квадратные трёхчлены на МВ (Финашке)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист!)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74605

Найдите наименьшее значение функции

f(x)=|x|+2|x − 1|+ 3|x− 2|+ ...+ 11|x− 10|

Источники: Миссия выполнима 2018

Показать ответ и решение

Заметим, что как бы ни раскрывались модули, f(x)  будет линейной функцией, которая имеет вид f(x)= kx+ b,
      i    i  где коэффициенты зависят от промежутка на числовой прямой. Тогда разобьем числовую прямую на 12  отрезков: (−∞;0),(0;1),(1;2),...,(9;10),(10;+∞ ).  Тогда ki  это угловой коэффициент на i  -том промежутке.

Заметим, что − 66≤ k1 <k2 <k3 < ...< k10 < k11 = 66.  Это значит, что f(x)  сначала убывает, а потом возрастает, так как k8 = 1+ 2+ 3+...+7− 8− ...− 11= −10  при x ∈(6;7),  а k9 = 1+ 2+3 +...+ 8− 9− 10 − 11= 6  при x∈ (7;8).  Значит, наименьшее значение функции достигается при x= 7.  Оно равно f(7)=146.

Ответ: 146

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!