8.02 Подсчет количества слов/чисел
Ошибка.
Попробуйте повторить позже
Таня составляет слова(не обязательно осмысленные) из букв А, Б, В, Г, Д, Е максимальной(но не обязательно такой) длины 5. Каждую букву можно использовать неограниченное кол-во раз или не использовать совсем. Сколько всего слов может составить Таня, если слово НЕ может начинаться с гласной и НЕ может заканчиваться согласной?
Решение аналитически:
Начнем со слов длины 5: на 1 место можно поставить 4 буквы (все согласные), на второе - 6, на третье - 6, на четвертое - 6, на пятое - 2 (все гласные).
Слова длины 4: на 1 место можно поставить 4 буквы (все согласные), на второе - 6, на третье - 6, на четвертое - 2 (все гласные).
Слова длины 3: на 1 место можно поставить 4 буквы (все согласные), на второе - 6, на третье - 2 (все гласные).
Слова длины 2: на 1 место можно поставить 4 буквы (все согласные), на второе - 2 (все гласные).
Меньше букв нельзя, так как мы не выполним условие никак.
Получаем ответ: 4*6*6*6*2 + 4*6*6*2 + 4*6*2 + 4*2 = 2072.
Решение программой с помощью циклов:
Напишем программу для перебора всевозможных 2-буквенных, 3-буквенных, 4-буквенных, 5-буквенных слов из заданных букв. Для этого организуем соответствующее количество вложенных циклов (по одному на каждую позицию в слове). Каждый цикл перебирает буквы заданной строки, формируя все возможные комбинации. Запишем количество подходящих слов.
a = "АБВГДЕ" # Наше слово gl = "АЕ" # Гласные буквы слова sogl = "БВГД" # Согласные буквы слова count = set() # Множество подходящих слов # Двухбуквенные слова for x1 in sogl: for x2 in gl: s = x1 + x2 # Формируем слово и добавляем его в множество count.add(s) # Трёхбуквенные слова for x1 in sogl: for x2 in a: for x3 in gl: s = x1 + x2 + x3 # Формируем слово и добавляем его в множество count.add(s) # Четырёхбуквенные слова for x1 in sogl: for x2 in a: for x3 in a: for x4 in gl: s = x1 + x2 + x3 + x4 # Формируем слово и добавляем его в множество count.add(s) # Пятибуквенные слова for x1 in sogl: for x2 in a: for x3 in a: for x4 in a: for x5 in gl: s = x1 + x2 + x3 + x4 + x5 # Формируем слово и добавляем его в множество count.add(s) print(len(count)) # Количество подходящих слов
Решение программой с помощью модуля itertools:
Для решения задачи с помощью модуля itertools воспользуемся функцией product. Она генерирует все возможные слова из заданного алфавита. Запишем количество подходящих слов.
from itertools import product count = set() # Множество подходящих слов for i in range(2,6): # С помощью product будем рассматривать слова различной длины for x in product("АБВГДЕ", repeat = i): s = "".join(x) # join объединит буквы if s[0] not in "АЕ" and s[-1] in "АЕ": # Проверка по условию count.add(s) # Добавляем слово в множество print(len(count)) # Количество подходящих слов
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!