Тема 5. Алгоритмы – анализ простейших алгоритмов

5.03 Действия над цифрами числа

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгоритмы – анализ простейших алгоритмов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#6175

Автомат получает на вход четырехзначное число k  . По этому числу строится новое число M  по таким правилам:

1. Последняя цифра числа увеличивается на единицу;

2. Последняя цифра числа переставляется в начало числа;

3. Пункты 1 − 2  повторяются n  раз.

4. Вывод получившегося числа M  .

Примечание: В процессе работы алгоритма не должно происходить ситуаций переполнения (когда последняя цифра числа 9 и она увеличивается на единицу)

Пример: при исходных числах k = 3672  и n = 3  автомат выведет число 7833  .

Укажите наибольшее число k  такое, что при n = 5  сумма цифр числа M  равна 18, и третья цифра числа M  равна 6  .

Показать ответ и решение

Запишем исходное число k в таком виде: x1 : x2 : x3 : x4   .

Если n =  5  , то новое число будет представлено в виде (x4 + 2 ) : (x1 + 1) : (x2 + 1) : (x3 + 1 )  . Заметим, что сумма цифр нового числа M  на n  больше чем сумма цифр исходного числа k  . Тогда сумма цифр исходного числа k  есть 13  . Также заметим, что если на третьей позиции в числе M  стоит 6  , то верно x2 + 1 = 6  , откуда x2 = 5  ; Значит, необходимо подобрать такие x1,x3, x4   , чтобы их сумма была равна 8  , и число k  было максимально. При этом x1,x3 < 9,  а x4 < 8.  Такое число 8500  .

Ответ: 8500

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!