Тема . Тождественные преобразования

Действия с числами, составление уравнений и формулы сокращённого умножения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тождественные преобразования
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#58026

Даны два числа (не обязательно целые), не равные 0.  Если каждое из них увеличить на единицу, их произведение увеличится вдвое. А во сколько раз увеличится их произведение, если каждое из исходных чисел возвести в квадрат и затем уменьшить на единицу?

Подсказки к задаче

Подсказка 1

Запишем наше условие в виде уравнений. Получится (a+1)(b+1)=2ab. Если записать то, что мы хотим найти, то получится (a^2-1)(b^2-1). Как теперь это преобразовать?

Подсказка 2

Да, можно разложить в разность квадратов и получить (a-1)(b-1)(a+1)(b+1). Отлично, произведение последних двух скобок известно, осталось как-то найти произведение первых двух скобок....

Подсказка 3

Раскройте скобки в изначальном условии и попробуйте его привести к равенству со скобками (a-1)(b-1)

Показать ответ и решение

Обозначим данные числа через a  и b.  По условию

(a+ 1)(b+ 1)= ab+ a+ b+ 1= 2ab

Приведя в последнем равенстве подобные члены, получаем

ab− a− b− 1= 0

Тогда

(a− 1)(b− 1)= ab− a− b+ 1= (ab − a − b − 1)+ 2= 0 +2 = 2
 ( 2   )(2   )
  a − 1  b− 1 = (a− 1)(b− 1)(a + 1)(b+ 1)= 2⋅2ab= 4ab
Ответ:

в 4  раза

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!