Тема . Задачи с параметром

Алгебра. "Гвозди" для квадратичной функции

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103998

При каких значениях параметра a  три различных параболы с уравнениями y = ax2+ x+ 1; y = x2+ax+ 1; y = x2+ x+ a  имеют общую касательную? (Точки касания не обязаны совпадать)

Показать ответ и решение

Пусть y =kx+ b  — касательная из условия. Выразим условия пересечения прямой y  с каждой из парабол:

  2              2               2
ax + x+ 1= kx+b, x +ax+ 1= kx+ b, x +x +a= kx+ b

Так как прямая является касательной к каждой из них, значит, у каждого уравнения должно быть единственное решение, получаем систему, приравнивая дискриминант каждого уравнения к нулю:

(|  (1− k)2 − 4a(1− b)= 0
{  (a− k)2− 4(1− b)= 0
|(  (1− k)2 − 4(a− b)= 0

(|{ (1− k)2 = 4a(1− b)
  (a− k)2 = 4(1− b)
|( (1− k)2 = 4(a− b)

Из первого и третьего уравнений:

4a(1− b)= 4(a− b)⇒ a − ab= a− b⇒ ab= b

Отсюда возможно два случая:

[ b =0, для лю бого a
 a =1, для любого b

Значение a= 1  не подходит, так как тогда первая и третья параболы совпадают, что противоречит условию об их различии.

Так как b= 0,  верно:

{ (1− k)2 = 4a
  (a− k)2 = 4

{
  (1− k)2 = 4a
  k =a∓ 2

Получаем 2 случая:

[
  (3− a)2 = 4a, если k= a− 2
  (1+ a)2 = 4a, если k= a+ 2

Решения: a= 1  при k= 3,  a= 1  при k =− 1,  a= 9  при k =7.

Из всех решений подходит только одно: a= 9  при k= 7.  Получаем единственное значение параметра: a= 9.

Ответ:

9

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!