Тема . Задачи с параметром

Алгебра. "Гвозди" для квадратичной функции

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#39888

Найдите все значения параметра a  , при каждом из которых графики функций

      2x2−4x+3   3             x2− 2x+3
f(x)= 3      + a   и  g(x)= a⋅3      − 5

имеют ровно три общие точки.

Источники: ПВГ-2012, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

Перепишем равенство функций в виде

 2(x−1)2+1  3     (x− 1)2+2
3       +a  =a ⋅3       − 5

Или при t= 3(x−1)2 ≥ 1

3t2− 9at+ a3+ 5= 0

Это квадратное уравнение относительно t  должно иметь решение t= 1  (потому что иначе для решения t1 > 1  log3t1 =(x− 1)2 > 0  и относительно x  будет два решения, то есть если t= 1  не корень, то решений чётное количество). Второе решение же должно быть строго больше одного (отсюда как раз и получатся ещё два решения). Итак, подставим x =1  ⇐ ⇒  t= 1  :

                                                        √--
3− 9a +a3+ 5= 0  ⇐⇒   (a − 1)(a2+ a− 8) =0 ⇐ ⇒  a =1,a= −1±--33-
                                                       2

При таких a  решением будет t = 1
 1  . Чтобы второй корень t
 2  был больше единицы, необходимо и достаточно 9a =t + t >2  ⇐⇒   a> 2
 3   1  2             3  , поэтому остаются только a= 1,a = −1+√33-
          2  .

Ответ:

 1;−1+√33
    2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!