Тема . Задачи с параметром

Алгебра. "Гвозди" для квадратичной функции

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79187

Найдите все значения параметра a  , при которых уравнение

  2          2
sin x+ asinx =a − 1

имеет решения.

Подсказки к задаче

Подсказка 1

Здесь просится очевидная замена t = sinx. Тогда, у нас получается квадратное уравнение на t, которое должно иметь решение на отрезке [-1; 1]. Это значит, что нам надо рассмотреть два случая в соответствии картинкам, которые будут получаться. То есть либо у нас отрезок, который создается корнями, лежит внутри отрезка [-1, 1], либо не лежит, но при этом не содержит. Осталось задать условия на оба наших случая.

Подсказка 2

Самый сложный случай - первый. Потому как много условий. Во-первых, значения на концах отрезка больше нуля, чтобы задать этим возможность наличия двух корней, во-вторых, вершина должна лежать на отрезке (чтобы не было ситуации, когда у нас вершина уехала в какую-то из сторон, а тот факт, что на концах больше давал лишь то, что эта ветка параболы на всем отрезке больше 0), а в-третьих, D ≥ 0, чтобы были корни (или корень)

Подсказка 3

А второй случай прост - надо лишь задать, что на концах отрезка парабола принимает разные по знаку значения (нужно еще разобраться с нулем). Тогда остаётся решить две этих системы, объединить, а потом пересечь с [-1; 1] и записать ответ.

Показать ответ и решение

Сделаем замену sinx =t, −1 ≤t≤ 1:

 2      2
t + at− a + 1= 0

Нужно, чтобы это квадратное относительно t  уравнение имело хотя бы один корень из отрезка [−1;1].

Ровно один корень на этом отрезке уравнение имеет в случае, когда значения функции f(t)=t2+ at− a2+ 1= 0  на концах отрезка имеют разные знаки (допускается при этом, чтобы одно или оба значения были равны нулю, тогда корни уравнения будут в точках -1 или 1):

f(− 1)⋅f(1)≤0

(1− a− a2+ 1)(1+a − a2+ 1)≤0

(a+ 2)(a− 1)(a− 2)(a+1)≤ 0

(a2− 1)(a2− 4)≤ 0

1≤ a2 ≤4

А также один корень (в случае нулевого дискриминанта, когда вершина касается оси и лежит на отрезке) или два корня на отрезке будет при условиях

(
||||{ y(− 1) >0
  y(1)> 0
||||( tверш ∈ [−1;1]
  D ≥0

(|  1− a − a2+ 1> 0
|||{        2
|  1+a − aa + 1> 0
|||(  −21≤ −22 ≤1
   a +4a − 4≥ 0

(
|||  −2< a< 1
|{  −1< a< 2
|||  −2≤(a≤ 2 √ ]  [ √-   )
|(  a∈  −∞;− 255 ∪ 255;+∞

   (    ∘ -]  [∘ --)
a ∈ − 1;−  4  ∪   4;1
          5      5

Итого решения из [−1;1]  есть при

  [    ∘ -]  [∘ --]
a∈ − 2;−  4  ∪   4;2
         5      5
Ответ:

[    ∘4]  [∘ 4- ]
− 2;−  5  ∪   5;2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!