Алгебра. "Гвозди" для квадратичной функции
Ошибка.
Попробуйте повторить позже
При каких значениях параметра решением неравенства
является отрезок
Подсказка 1
Перед нами парабола — что можно сказать про её график? Куда направлены ветви такой параболы?
Подсказка 2
Нужно разобраться с условием на f(2) и f(3): какими должны быть эти значения, чтобы решением был именно отрезок [2; 3]? Ещё, конечно, можно поставить условие на дискриминант, но может оно нам и не необходимо?
Рассмотрим множество функций
При каждом фиксированном это квадратичная функция, графиком которой является парабола с ветвями, направленными вверх. При этом она может выглядеть как (1) (2) или (3)
Для того, чтобы решением неравенства являлся отрезок необходимо, чтобы парабола выглядела как (2), то есть необходимо выполнение следующих условий:
Заметим, что при неравенство выполняется, так как оно равносильно Следовательно, получаем
Замечание.
Первое условие системы можно считать избыточным в том смысле, что дискриминант автоматически положителен при условии поскольку квадратный трехчлен имеет два корня и
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!