Алгебра (+ логика). Несколько неизвестных или несколько параметров
Ошибка.
Попробуйте повторить позже
Найдите все действительные числа для которых существуют многочлены от одной переменной и такие что равенство
выполняется при всех значениях , кроме конечного числа (есть лишь конечное множество значений , для которых равенство не выполняется).
Источники:
Подсказка 1
Мы знаем, что 1/x(x+ 1) = 1/x - 1/(x + 1) - так мы удобно для себя разложили правую дробь. Однако, мы знаем, что любую, так называемую иррациональную дробь (то есть, где сверху и снизу - многочлены) можно разложить на сумму вида P_i(x) / (x - alpha_i) ^ n_i, где P_i(x) - не нулевой многочлен, а alpha_i - корень, возможно комплексный(чтобы было линейно разложимо) многочлена Q(x). Поэтому основная идея задачи - разложить дроби в такой вид и смотреть на то, могут ли как-то сократиться подобные. То есть, если у вас есть к примеру, в левой часть какой-то не сократившийся член 1/(x + k), а справа его нет, то это значит, что равенство происходит только в конечном числе точек, что нам не подходит. В правой часть у нас только 1/x - 1/(x + 1), значит и в левой части должно быть также. Значит, по нашему предположению о решении задачи - хотелось бы доказать, что-то насчет 0,1 и их связи с корнями. Если мы хотим доказывать от противоречия и как-то использовать корни, то, с учетом вот этой «несократимости», которая была описана выше, как мы хотим его получить?
Подсказка 2
Удачным был бы шаг решения, когда мы получили какой-то корень отличный от 0 и 1, при этом, такой, чтобы он был корнем Q(x), но не корнем Q(x + d), потому что тогда бы мы получили бы в нашем разложении на сумму дробей что-то, что не сокращается с Q(x + d) и не сокращается с правой частью. И поскольку мы каждый раз прибавляем x + d (напомним - мы можем подставлять почти, с точностью до конечного числа, любые значения и будет выполнено равенство), то наверное правильным решением будет ввести понятие цепи - всевозможных чисел вида alpha + md, где m - целое и alpha - корень Q(x). А также нам надо что-то понимать про то, какие из чисел этой цепи являются корнем или нет. Попробуйте использовать принцип крайнего и получите хорошее утверждение, которое значит больше половины задачи.
Подсказка 3
Нам удобно ввести m_- и m_+ - наименьшее и наибольшее соотвественно число, при котором alpha + md является корнем Q(x) (корректно ли это определение?). Тогда в смысле цепи нам бы хотелось доказать, что если alpha - корень, то 0 и 1 лежат в цепи alpha. Предположим, что хотя бы одно не лежит в цепи. Тогда, корень Q(x) - alpha_i = alpha + m_+ * d не равно ни 0, ни 1. Может ли быть, что это также корень Q(x + d)? А о чем тогда это говорит в связи с предыдущими рассуждениями?
Подсказка 4
Конечно, это не может быть корнем Q(x + d), иначе тогда бы alpha + (m_+ + 1) * d был бы корнем Q(x), что противоречит максимальности. Тогда эта дробь, соответствующая корню, не сократится ни с Q(x + d), ни с правой частью. А потому пришли к противоречию. Значит, для некоторого целого m_1 верно, что alpha + m_1 * d = 0, и для некоторого целого m_2 верно, что m_2 * d + alpha = 1, а значит, (m_2 - m_1) * d = 0 = > для некоторого целого m выполнено, что md = 1 => d = 1/m, где m - целое. Осталось доказать, по хорошему, конструктивно, что все такие d подходят. Если строить пример, то надо строить его в виде уже разложенных в сумму дробей многочленов, потому что нам потом самим раскладывать. Какой тогда пример мы можем привести, если хотим, чтобы после разности очень похожих дробей (по сути - все сместится на 1/m в знаменателях и это будет что-то очень похожее), у нас осталось только 1/x - 1/(x + 1)? Может быть как то, условное «смещение» некоторой последовательности использовать? А как его добиться?
Подсказка 5
Если мы хотим добиться смещения по последовательности, то нам надо, чтобы при прибавлении 1/m для каждого члена у нас получался следующий, а также, чтобы последний член становился равным 1, чтобы получалось 1/(x + 1). На такую роль очень подходит дробь вида 1/x + 1/(x + 1/m) + 1/(x + 2/m) + … + 1/(x + (m - 1)/m). Тогда все работает. А правда ли, что этот пример работает для всех m? А если взять m = -1? К тому же, стоит, напоследок, перед тем как полностью решить задачу подумать, к чему тут именно конечное число точек, а не нулевое и везде ли мы делали корректные переходы не упуская случай d = 0. Пробегитесь по решению и проверьте на корректность все
Сразу заметим, что при равенство из условия невозможно, так что далее мы везде считаем, что даже когда не напоминаем об этом явно.
Предположим, что такие многочлены и нашлись. Тогда можно считать, что они взаимнопросты (иначе поделим оба на общий множитель — новая пара тоже удовлетворяет условию), и у старший коэффициент равен 1 (домножим и на константу , чтобы старший коэффициент стал равен 1). Введем обозначение для разложения на линейные множители (естественно, воспользовавшись существованием такого разложения в комплексных числах):
Для комплексного числа множество чисел вида где , будем называть цепью числа
______________________________________________________________________________________________________________________________________________________
Ключевое утверждение:
Если — корень то числа 0 и 1 принадлежат цепи
______________________________________________________________________________________________________________________________________________________
Доказательство.
Пусть — корень тогда обозначим через и такие минимальное и максимальное значения при которых является корнем Заметим, что и определены корректно: множество значений не пусто (поскольку 0 подходит) и конечно, поскольку у конечное число корней (первое место, в котором важно, что ). Тогда пусть не оба числа 0 и 1 лежат в цепи Тогда одно из двух чисел и не является ни 0 ни 1 (второе место: нам важно, что и — два разных числа). Рассмотрим эти два случая.
Пусть — не равно ни 0 ни 1. Посмотрим на равенство из условия
и разложим левую часть на простейшие дроби:
где степень меньше при причем
Поскольку — корень в разложение входит член со знаменателем и ненулевым числителем. Но — не корень иначе было бы корнем что противоречило бы максимальности . Тогда член со знаменателем не входит в разложение значит члену с таким знаменателем слева не с чем сократиться — но он не входит в правую часть — противоречие.
_________________________________________________________________________________________________________________________________________________________________________________
Итак, мы доказали, что если у многочлена есть комплексные корни, то в цепь этого корня входят числа 0 и 1, то есть выполняется равенство для какого-то целого . Если же у нет комплексных корней, то он - ненулевая константа, то есть и — многочлены, тогда их разность не может равняться
Осталось показать, что все значения вида где подходят. Для достаточно взять функцию
и привести сумму к общему знаменателю, числитель взять в качестве а знаменатель — Для то же самое сделать с суммой
где
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!