Алгебра. Задачи без идеи, решающиеся аналитически
Ошибка.
Попробуйте повторить позже
При каких значениях параметра наибольшее расстояние между корнями уравнения
принадлежащими интервалу принимает наименьшее значение? Найдите это наименьшее значение.
Источники:
Подсказка 1
Так, ну у нас тут кубическое уравнение относительно тангенса. В общем виде мы очень плохо решаем уравнения 3 степени, поэтому обычно в таких ситуациях мы пытаемся найти какое-то решение, а потом уже решать квадратное, поделив кубическое на это решение. Если вы верите в светлое будущее, то вам, скорее всего, нужно найти этот корень, потому как иначе непонятно, что делать и как исследовать разность между корнями, да ещё арктангенс брать. В общем, попытайтесь найти решение!
Подсказка 2
Ищется оно недолго, так как первая мысль «tgx = 1» срабатывает. После чего мы получим некоторый квадратный трехчлен, который уже можно разложить, либо просто угадав корни, либо через дискриминант. Получим, итого, (t - 1)(t - a)(at + 2) = 0, где t = tgx. Посмотрим на корни t = а и t = -2/a(если a!=0). Что можно про них сказать?
Подсказка 3
В силу того, что tgх нечетная функция, выходит, что один из корней точно < 0(уже после взятия арктангенса). Но при этом у нас есть корень pi/4. Что тогда можно сказать про наибольшее расстояние? А если а = 0?
Подсказка 4
Верно, что оно больше pi/4. Но в этих случаях, мы рассмотрели ситуации, когда a!=0, так как иначе один из корней не определен. Если же а = 0 , то есть два корня - 0 и pi/4. И тут расстояние ровно pi/4. Значит, в других ситуациях расстояние больше pi/4, а в этом pi/4. Значит, есть и оценка, и пример!
Данное уравнение можно переписать в виде
Откуда при либо и либо и либо (при и Таким образом, данное уравнение имеет на интервале два или три различных корня (второй корень не может совпадать с третьим, так как и имеют разные знаки при любом в силу нечётности арктангенса).
Случай 1: Тогда остаётся два корня и которые отличаются на
Случай 2: Тогда разность между корнями и больше, чем
Случай 3: Тогда разность между корнями и больше, чем
при
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!