Симметрия (и чётность) в параметрах
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра , при которых уравнение
имеет единственное решение.
Подсказка 1
Видим, что в уравнении фигурируют х² и cos(x), что мы можем сказать об этих функциях?
Подсказка 2
Конечно это чётные функции! Ну тогда если x = t — решение уравнения, какое ещё значение х будет нам подходить?
Подсказка 3
x = -t тоже будет являться решением! Но если решение должно быть только одно, получается, что оба этих корня должны совпасть, то есть t должно равняться -t, тогда какое число точно должно быть корнем уравнения?
Подсказка 4
Значит, у нас не должно быть никаких корней кроме нуля! Тогда мы можем подставить 0 и найти b) Только не забудьте убедиться в том, что при найденном b у нас действительно нет никаких дополнительных корней
Предположим, что не является решением. Тогда решений чётное число, поскольку если есть решение то есть и решение Противоречие с условием о единственном решении.
Тогда является решением:
При этом значении у уравнения
решений не просто нечётное число, а ровно единственное, поскольку при а в силу монотонности тангенса и области значений косинуса.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!