Тема . Задачи с параметром

Исследование области значений функции (в том числе a = f(x))

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90805

Найдите все значения параметра a  , при которых уравнение

   (   a)
sin  x+ x = x+ 1

имеет бесконечно много решений.

Источники: ДВИ - 2013, вариант 4, задача 8 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

Слева у нас стоит синус, какие тогда ограничения можно сразу наложить на правую часть и x?

Подсказка 2

x лежит на [-2;0)! Теперь подумаем, а как бы мы решали уравнение sin(f(x)) = g(x)? Быть может, сначала решим его относительно a, а потом уже найдем количество корней на промежутке?

Подсказка 3

x — корень уравнения, если x + a/x - arcsin(x+1) = 2*pi*k, k — целое. То есть перед нами комбинация трёх функций (одна из них меняется в зависимости от a), которую мы исследуем на [2;0).

Подсказка 4

Исследуйте F(x) = x + a/x - arcsin(x+1) на непрерывность и неограниченность на нужном промежутке!

Показать ответ и решение

Отметим сразу, что уравнение может иметь решения только при x ∈[−2;0).

При a= 0  уравнение имеет вид:

sinx =x +1

Последнее уравнение на промежутке [−2;0)  не имеет бесконечного количества решений, поскольку графики функций f(x)=sinx  и g(x)=x +1  пересекаются на этом промежутке в одной точке.

Рассмотрим теперь случай, когда a⁄= 0.  Пусть t= arcsin(x+1).  Тогда x  — корень уравнения, если

   a
x+ x = t+ 2πk, k∈ℤ

    a
x + x − arcsin(x +1)= 2πk

Поскольку функции f(x)=x, g(x)= arcsin(x+1)  непрерывны и ограничены при x∈ [− 2;0),  а функция      a
q(x)= x  непрерывна и неограничена при x∈ [− 2;0),  то функция F(x)=x + ax − arcsin(x +1)  также непрерывна и неограничена при x∈ [−2;0).  Следовательно, при a ⁄=0  функция F(x)  принимает значения, кратные 2π,  бесконечное число раз, и исходное уравнение имеет в этом случае бесконечно много решений.

Ответ:

 (−∞;0)∪ (0;+∞ )

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!