Тема . Задачи с параметром

Графика. Множество касательных, арктрига и прочее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#78775

Найти все значения параметра α,− π <α < π  , при которых система уравнений

{ (4− x2− y2)(y2− 4x +28)= 0
  x cosα+ ysinα = 2

имеет ровно три решения.

Источники: Вступительные в МФТИ - 1994 (см. olymp-online.mipt.ru)

Показать ответ и решение

Система равносительна совокупности

⌊ { 4 − x2− y2 = 0
||
|| { x2cosα+ ysinα = 2
⌈   y − 4x+ 28= 0
    x cosα+ ysinα = 2

Графиком уравнения x2+ y2 =4  является окружность с центром O (0;0)  , радиус которой равен 2  .

Графиком уравнения x= y2+ 7
    4  является парабола с вершиной (7;0)  , симметричная относительно оси абсцисс, причем x ≥7  .

Эти графики не имеют общих точек, следовательно, системы из совокупности общих решений не имеют.

Уравнение xcosα+ ysinα= 2  задаёт семейство прямых, причём при любом − π < α< π  расстояние от центра окружности O (0;0)  до прямой равно

    |− 2|
∘cos2α+-sin2α-=2

радиусу. Поэтому это уравнение задает семейство касательных к окружности.

PIC

Тогда первая система совокупности имеет одно решение при всех − π < α <π  . А значит, вторая система должна иметь ровно два решения.

Если cosα = 0  , то sinα =1  или sin α= −1.

При sin α= 1  имеем одно решение (x,y)= (8,2)  ; при sinα= −1  получаем (x,y)= (8,−2)  — одно решение.

Следовательно, cosα ⁄=0.  Тогда вторую систему запишем в виде

(|     1 2
|{  x= 4y + 7
||(     2−-ysinα-
   x=   cosα

Откуда

1 2     2− ysinα
4y + 7= --cosα---

y2 cosα+ 4ysinα +28cosα− 8= 0

Это квадратное относительно y  уравнение будет иметь два решения при положительном дискриминанте.

D
4-= (2sinα)2− cosα(28cosα− 8)=− 32cos2α+ 8cosα +4 >0

Тогда 8 cos2α− 2cosα − 1 <0  , откуда       (    )
cosα∈ − 14;12 . Но cosα⁄= 0  , следовательно,      (    ) (   )
cosα ∈ − 14;0 ∪ 0;12 .

Решая эти неравенства, получаем ответ.

Ответ:

 α ∈(− arccos(− 1) ;− π) ∪(− π;− π) ∪(π;π )∪( π;arccos( − 1))
             4    2      2  3    3 2     2        4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!