Тема . Задачи с параметром

Алгебра в xOa (решение относительно параметра)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи с параметром
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90947

Найдите все такие значения величины x  , при которых неравенство

      2
(4− 2a)x + (13a− 27)x +(33− 13a)> 0

выполняется для всех a  , удовлетворяющих условию 1< a< 3.

Источники: Вступительные на биологический факультет МГУ, 1994 год июль, номер 5

Подсказки к задаче

Подсказка 1

Каким является данное неравенство относительно а?

Подсказка 2

Линейным! Тогда нам просто нужно записать его в виде k(x)a + b(x) > 0 и посмотреть, при каких значениях х в решения данного неравенства будут входить нужные нам ашки (не забудьте, что нам важно, какого знака выражение k(x)!)

Показать ответ и решение

Эта задача может запутать обозначением переменных. Тут параметр – x,  а независимая переменная – a!  Тогда перепишем исходное неравенство:

 2             2
4x − 27x+ 33>(2x − 13x +13)a

То есть мы имеем линейное неравенство с переменной a,  параметром x.  Но коэффициент при a  может принимать разные знаки, поэтому разберем случаи:

1.

                 (        √--)  (    √--    )
2x2− 13x+ 13> 0,x∈ − ∞;13−--65  ∪ 13+--65;+∞
                         4          4

В таком случае можно поделить на это положительное число:

a < 4x2-− 27x+-33
    2x2 − 13x+ 13

По условию (1,3)  должен быть решением этого неравенства, а значит:

4x2-− 27x+-33
2x2 − 13x+ 13 ≥ 3

С учетом положительности знаменателя:

4x2− 27x+ 33≥ 6x2− 39x+ 39

      √ -   √-
x ∈[3−  6;3+  6]

Пересекая все условия, получаем:

   [   √- 13− √65)  (13+ √65    √-]
x ∈ 3−  6;---4--- ∪  ---4---;3+  6
2.

                  {13− √65 13+ √65}
2x2− 13x+ 13= 0, x∈---4---;---4---

При таких значениях параметра неравенство обращается в истину, поэтому такие значения войдут в ответ.

3.

                  (    √--     √--)
2x2− 13x+ 13< 0, x∈ 13−-65;13+--65
                      4       4

В таком случае неравенство имеем вид:

     2
a > 4x2-− 27x+-33
    2x  − 13x+ 13

Тогда:

 2
4x2-− 27x+-33≤ 1
2x − 13x+ 13

Решая оба неравенства, получим:

   (13− √65  ]  [  13+ √65)
x∈  ---4---; 2 ∪ 5;---4---

Объединяя эти случаи, получаем ответ.

Ответ:

 [3− √6;2]∪[5;3 +√6]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!