Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#100421

(a) Сфера с центром O  касается боковых рёбер SA,SB,SC  пирамиды SABC  в точках K,L,M  соответственно, а также касается её основания ABC.  Через точку сферы, ближайшую к точке S,  проведена плоскость, касающаяся сферы. Площадь сечения пирамиды SABC  этой плоскостью равна 9, а            √35-
∠KSO = arccos 6  . Найдите площадь треугольника KLM.

(b) Пусть дополнительно известно, что SO = 25,  а плоскости KLM  и ABC  параллельны. Найдите объём пирамиды SABC.

Показать ответ и решение

а) Пусть радиус сферы равен R  . Обозначим точки пересечения прямой SO  со сферой через P  и Q  (точка P  лежит на отрезке SO  , а Q  — вне него). Треугольники OKS,OLS  и OMS  прямоугольные (углы при вершинах K,L,M  прямые, так как касательные перпендикулярны радиусам, проведённым в точку касания). Эти треугольники равны по катету и гипотенузе (OK =OL = OM = R,SO  — общая), следовательно, ∠KSO = ∠LSO = ∠MSO  (обозначим эти углы через         1
α;sinα = 6  ); высоты, опущенные из точек K,L,M  на гипотенузу SO  , равны, а их основания — одна и та же точка H  , лежащая в плоскости KLM  (назовём эту плоскость τ)  . Пусть σ  — касательная плоскость к сфере, проведённая через точку P  . Обозначим точку пересечения σ  и SA  через E  . Рассмотрим сечение пирамиды и сферы плоскостью ASO

PIC

Из прямоугольного треугольника KSO  получаем SO = siRnα  . Тогда

               (      )
SP = SO − OP = R-1--− 1
                sinα

Пусть площадь сечения пирамиды плоскостью σ  равна S0 =9  , а плоскостью τ − SKLM  . Из подобия следует, что

                  2          2          2   2
SKLM :S0 = (KH :EP )= (SH :SP) = (SO − OH) :SP =

  ( R        )2   2(  1    )2         2
=  sinα-− Rsinα   :R  sinα − 1 = (1+sin α)

Следовательно,

SKLM = S0(1 +sin α)2 = 12,25

б) Если плоскости τ  и ABC  параллельны, то точка A  совпадает с точкой A1  такой, что A1Q ⊥ SO :

PIC

Тогда, обозначив площадь треугольника ABC  через SABC  , получаем

        1           1            ( SQ)2
VSABC = 3 ⋅SQ ⋅SABC = 3 ⋅(SO +R)⋅S0⋅ SP  =

= 13 ⋅(SO+ SOsinα)⋅S0⋅(SO +SO sinα)2 :(SO − SO sinα)2 =

                   3
= 1 ⋅SO ⋅S0⋅ (1+-sinα)2 = 343
  3        (1− sinα)    2
Ответ:

(a) 12,25

(b) 171,5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!