Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68706

Дан куб ABCDA  B C D
      1 1 1 1  с ребром равным x.  S  — сфера, вписанная в каркас этого куба (то есть, касающаяся всех его рёбер). Точка M  — середина ребра B1C1.  Прямая AM  вторично пересекает сферу S  в точке X.  Найдите AX.

Источники: ИТМО-2023, 11.4 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

У нас есть вписанная сфера, а мы хотим найти какой-то отрезок, конец которого лежит на сфере. Может, попробовать применить теорему о касательной и секущей...

Подсказка 2

Наша сфера касается ребра AA₁ в точке K, где K- середина AA₁. Тогда AK²=AX*AM. Надо как-то найти AM...

Подсказка 3

Мы работаем с кубом, поэтому логично было бы поискать теоремки Пифагора. Например для треугольника AMB₁. А почему он прямоугольный?

Подсказка 4

Потому что C₁B₁ перпендикулярен плоскости ABB₁. Тогда по теореме Пифагора для AMB₁: AM²=AB₁²+MB₁². Мы знаем, что B₁M=x/2. Осталось только найти AB₁² и досчитать AX.

Показать ответ и решение

PIC

Пусть L  — середина ребра BC,  тогда BL = BC2-= x2.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △ABL  получаем

                ∘ ------   -
    ∘ --2----2-    2  x2  √5x-
AL=   AB + BL  =  x + 4 =  2

M  — середина B1C1,  а L  — середина BC,  следовательно, ML,  как средняя линия квадрата BCC1B1,  равна BB1,  т.е. равна   x.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △AML  получаем

                  ∘ -------
AM  =∘AL2--+ML2-=   5x2+ x2 = 3x-
                     4       2

Пусть K  — середина ребра AA1,  тогда      x
AK = 2.  Т.к. сфера S  вписана в каркас куба ABCDA1B1C1D1,  значит, точками касания являются середины рёбер. Следовательно, используем теорему о касательной и секущей

                    AK2   2x2   x
AK2 =AX ⋅AM  ⇒ AX = AM--= 4⋅3x = 6
Ответ:

 x
 6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!