Параметры на МВ (Финашке)
Ошибка.
Попробуйте повторить позже
Отрезок длины двигали так, что оба его конца перемещались только по параболе
причём абсциссы соответствующих точек
только возрастали. Весь отрезок первоначально находился в полуплоскости
а в итоге оказался в полуплоскости
Найдите
множество всех возможных значений параметра
.
Подсказка 1
Так, у нас есть декартова система координат, и мы занимаемся сдвигом отрезка, как бы это всё выразить?
Подсказка 2
О, а давайте что-нибудь посчитаем через тригонометрию! Пусть наш отрезок PQ (причем у каждой точки есть свои координаты, их тоже можем ввести), Q' — проекция Q на абсциссу, будем выражать все через величину угла PQQ'
Подсказка 3
А что будем выражать?.. Например, можем выразить через разность координат абсцисс и ординат у концов отрезка, откуда получим функцию абсциссы одной из точек, зависящую от параметра и нашего угла. Хм, эта функция должна строго возрастать по условию..
Подсказка 4
Да, можно исследовать функцию, найти производную и показать, что при других значениях параметра мы не сможем выполнить условия.
Пусть и
— концы отрезка, причем
и
. Обозначим через
величину угла
, где
— проекция
точки Q на ось абсцисс. Тогда
, откуда
. Если функция
, отображающая
интервал
в интервал
, строго возрастает, то отрезок длины 1 можно переместить так, как это указано в условии
задачи.
Имеем . Неравенство
преобразуется к виду
, а исследование функции
показывает, что
, причем равенство достигается только при
. Это значит, что
полуинтервал (
] принадлежит множеству искомых значений
.
С другой стороны, при имеем
, функция
убывает в окрестности числа
и движение отрезка не может
удовлетворять всем заданным условиям. Покажем также, что, если
, то при движении отрезка обязательно был момент, когда
выполнялось равенство
. В самом деле: для
имеем равенства
и, как следствие, соотношения
и
. А при
имеем
то есть
. Ввиду
непрерывности изменения величины
и делаем вывод о существовании указанного момента.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!