Тема . Счётная планиметрия

Счёт в синусах и просто теорема синусов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#35125

Пусть H  — ортоцентр остроугольного треугольника ABC  . Докажите, что

AH =BC ⋅ctg ∠A.
Подсказки к задаче

Подсказка 1

Тригонометрия в соотношении, которое нам нужно доказать, и куча прямых углов —> счёт в синусах явно может нам помочь! Отыщите прямоугольные треугольники, в которых фигурируют все 3 объекта из равенства в условии, и поработайте с ними!

Подсказка 2

Попробуйте от одной стороны, домножая на синусы/косинусы, пропутешествовать к другой! Например, домножив (или разделив?) BC на синус угла BCA, мы превратим его в высоту из вершины B. А эту же высоту мы можем превратить с помощью угла BAC (а он нам нужен!) в AB₁ Как теперь от AB₁ добраться до AH? Не забывайте: куча прямых углов —> куча вписанных четырёхугольников —> куча равных углов

Показать доказательство

PIC

Обозначим основания высот из точек A  и B  за A1  и B1  соответственно. Из прямоугольного △BB1C  имеем

BB1 =BC sin∠C.

Тогда из прямоугольного △ABB1  получаем

AB1 =BB1 ctg∠A = BC sin∠C ctg∠A.

Остаётся заметить, что A1HB1C  вписанный, так как                  ∘    ∘    ∘
∠HB1C + ∠HA1C = 90 +90 = 180 , поэтому ∠AHB1 = ∠C  . Значит, из △AHB1  выполнено

      AB1
AH  =sin∠C =BC ctg∠A.

Замечание. Подумайте, как поправить формулу расстояния от вершины до ортоцентра, чтобы она была корректной не только в случае остроугольного треугольника.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!