Счёт в синусах и просто теорема синусов
Ошибка.
Попробуйте повторить позже
B неравнобедренном треугольнике проведены биссектрисы и . Известно, что и что радиус окружности, касающейся стороны и продолжений сторон и , равен 1. Найдите периметр треугольника
Источники:
Подсказка 1
Смотрите, у нас есть условие, что AA1/BB1 = AC/BC. Обратите внимание на треугольники AA1C и BB1C. Что можно про них сказать?
Подсказка 2
Хочется сказать что они подобны, но у них общий угол BCA не между двумя соответственными сторонами. Тогда это почти как 4 признак равенства треугольников, только подобия: если растянуть один из треугольников так, что там две стороны будут равны, то выйдет как раз 4 признак равенства! Что это будет означать?
Подсказка 3
Это значит, что либо угол AA1C = BB1C, но это значит, что ABC - равнобедренный, а так нельзя. Остается, что AA1C + BB1C = 180. Что тогда можно сказать про угол BCA?)
Подсказка 4
Он равен 60! А теперь попробуйте посчитать периметр, вспомнив про то, что отрезок касательной из C к нашей вневписанной окружности - это полупериметр)
Докажем, что . Для этого положим , и воспользуемся теоремой синусов.
Имеем:
откуда
С учетом условия это означает, что . Равенству противоречит условие задачи.
Поэтому , откуда и
Теперь найдем периметр треугольника . Пусть окружность с центром касается стороны в точке , а продолжений сторон и - в точках и соответственно.
Тогда и
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!