Тема . Счётная планиметрия

Счёт в синусах и просто теорема синусов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92261

В окружность Ω  вписан четырёхугольник ABCD  . На стороне BC  отмечена точка E  таким образом, что CD = CE = 1  и          ∘
∠AED  =30 . Найдите радиус окружности Ω  , если известно, что          ∘
∠ACD  =25 и          ∘
∠ACB = 75 .

Подсказки к задаче

Подсказка 1

В условии нам даны углы и равные стороны, давайте тогда попробуем посчитать и другие!

Подсказка 2

∠DAB = 80°, а ∠CAE = 35°! Давайте теперь подумаем, а на что намекает нам поиск радиуса описанной окружности треугольников, в которых известны некоторые стороны и углы?

Подсказка 3

Будем пользоваться теоремой синусов! Было бы удобно для этого выбрать треугольники с известными углами и с общими сторонами.

Подсказка 4

Применим теорему синусов для треугольников △DCE, △ACD и выразим DE и AD через тригонометрические функции и ∠DAC! А в каком треугольнике мы можем связать эти две стороны с помощью пропорции?

Подсказка 5

Запишем пропорцию со сторонами AD и DE из теоремы синусов для треугольника △ADE! Теперь мы можем подставить раннее найденные представления этих сторон и выразить 2*sin(25).

Подсказка 6

2sin(25°) = sin(∠DAC)*2*cos(40°)/sin(∠DAC+35°). Осталось лишь найти, чему может быть равен ∠DAC и найти радиус известным ранее способом ;)

Показать ответ и решение

Первое решение.

PIC

∠CDE = ∠CED = 40∘ из треугольника CDE,  ∠CAE = 35∘ из треугольника CEA,  ∠DAB = 80∘ из вписанности четырёхугольника ABCD.

По теореме синусов для треугольника DCE  :

--DE-- = --1-,DE = sin-80∘ =2cos40∘.
sin100∘   sin40∘      sin 40∘

По теореме синусов для треугольника ACD  :

----1---= -AD--,AD = -sin25∘-.
sin∠DAC   sin 25∘      sin∠DAC

Наконец, применяя теорему синусов для ADE  :

-AD--   -----DE------
sin 30∘ = sin(∠DAC  +35∘).

Подставляем в последнюю пропорцию выражения для AD  и DE  , которые получили выше:

     ∘  sin∠DAC--⋅2-cos40∘
2sin25 =  sin(∠DAC +35∘) .

Отсюда видно, что ∠DAC  =30∘ подходит, т.к. sin 65∘ = cos25∘ , а из

sin50∘           sin(∠DAC + 35∘)
sin25∘-= 2cos25∘ =---sin∠DAC----= cos35∘+ sin35∘ctg∠DAC.

понятно, что этот угол определяется однозначно (он лежит в интервале от 0  до π  , и мы знаем численное значение его котангенса).

Таким образом, можно выразить радиус окружности из треугольника DAC :

R = 1⋅--1-∘ =1.
    2 sin 30

______________________________________________________________________________________________________________________________________________________

Второе решение.

Посчитаем углы:

∠DCE  =∠ACE  +∠DCA  =100∘

                ∘
∠CDE  =∠CED  =40

∠EAC  =180∘− ∠AEC − ∠ECA =35∘

Отметим на AE  такую точку F,  что ∠CF E =40∘ :

PIC

Тогда ∠FCA =35∘,  то есть ∠FCA = ∠EAC,  откуда F A= FC.  А ∠EF C =70∘,  то есть ∠EFC = ∠AEC,  откуда FC = EC = CD =1.  Значит, треугольник FDC  равнобедренный, а так как ∠F CD =60∘,  то FDC  ещё и равносторонний, то есть FC = CD = FD.

Итак, мы получили, что

FA =F D =FC = 1,

откуда точка F  является центром окружности, описанной около треугольника ACD.  Отсюда искомый радиус равен 1.

Ответ: 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!