Тема . КФУ (олимпиада Казанского Федерального Университета)

Функции на КФУ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#65457

Функция f  для всех действительных x,y  удовлетворяет неравенствам

f(x+ y) ≥f(x)+f(y),  f(x)≥ x

Найдите все такие функции f(x)  .

Показать ответ и решение

Заметим, что f(x)= f(x+0)≥ f(x)+ f(0)  , то есть 0≥ f(0)  . С другой стороны f(0)≥ 0  по условию, а значит, f(0) =0.

Теперь заметим, что f(0)≥ f(x)+ f(−x)≥ 0,  а значит, f(x)+f(−x)= 0.

Теперь запишем неравенство f(− x)≥− x.  Зная, что f(−x)= −f(x),  получаем неравенство − f(x)≥ −x,  то есть x ≤f(x)≤x.

Следовательно, f(x)= x.

Ответ:

 f(x)= x

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!