Тема 15. Алгебра логики – преобразование логических выражений

15.07 Прочие прототипы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63122

Введём два утверждения. ОСТРОУГ(a, b, c) – «существует остроугольный треугольник со сторонами a, b и c». ТУПОУГ(a, b, c) – «существует тупоугольный треугольник со сторонами a, b и c». Аргументы a, b и c в каждой из функций подаются в неё по возрастанию, иначе функция возвращает ложное значение.

Для какой минимальной длины отрезка A  формула

 ------------------  -----------------
(ОС ТРО УГ(39,80,x)∧ ТУП ОУ Г(65,72,x)) → (((x > 80)∧(x < 119)) → (x ∈ A ))

тождественно истина (т. е. принимает значение 1) при любом натуральном значении переменной x  ?

Показать ответ и решение

Раскрываем импликацию и упрощаем выражение, получаем:

О СТР ОУ Г(39,80,x)∨ ТУ ПО УГ(65,72,x)∨ (x ≤ 80)∨ (x ≥ 119)∨ (x ∈ A)

Выполним отрицание известной части:

¬(ОС ТРО УГ(39,80,x)) ∧¬(Т УП ОУГ (65,72,x))∧(x > 80)∧ (x < 119)

Разберёмся, когда первый треугольник не будет остроугольным и когда второй треугольник не будет тупоугольным. При x ≤ 41  или x ≥ 119  треугольник (39, 80, x) не существует. При x ≤ 7  или x ≥ 137  треугольник (65, 72, x) не существует. По условию в функции ОСТРОУГ(a, b, c) и ТУПОУГ(a, b, c) подаются аргументы по возрастанию, поэтому x будет являться наибольшей стороной.

Треугольник является остроугольным, когда a2 + b2 < c2  и является тупоугольным при a2 + b2 > c2  . Таким образом, получаем, что для (39,80,x)  остроугольный треугольник не существует при x ≥ √392-+-802  , то есть при x ≥ 89  . Аналогично для (65,72,x )  , тупоугольный треугольник не существует при     √--2----2
x ≤  65  +72  , то есть при x ≤ 97  .

Получаем, что отрицаемая известная часть будет истинна при x ∈ [89,97]  .

Чтобы выражение было истинно при всех x  , найденные x  должны принадлежать А. Следовательно, минимальная длина A  обеспечивается, когда A = [89,97]  . Таким образом, длина A  равна 8  .

Ответ: 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!