Тема 18. Работа с электронными таблицами

18.04 Шахматные фигуры

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела работа с электронными таблицами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#87541

Квадрат разлинован на N  × N  клеток. В левом верхнем углу квадрата стоит ладья. Ладья может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо X или вниз X. По команде вправо ладья перемещается на X клеток вправо, по команде вниз – на X клеток вниз, где 1 ≤ X ≤ N  . Квадрат ограничен внешними стенами, сквозь стену ладья пройти не может. Перед стартом ладьи в каждой клетке квадрата записывается число от 1 до 200.

Определите минимальную и максимальную сумму чисел в клетках, в которых может остановиться ладья при перемещении из левого верхнего угла в правый нижний. В ответе укажите два числа через пробел – сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N × N  , каждая ячейка которой соответствует клетке квадрата.

Вложения к задаче
Показать ответ и решение

Нам дано поле 21 на 21, создадим еще одно поле такого же размера по диагонали (ячейки V22 : AP 42  ).

Рассмотрим ячейку, в которую итоге нам нужно попасть AP 42  , в нее можно попасть из любой ячейки диапазонов AP 22 : AP 41  и V 42 : AO42  , так как мы хотим минимизировать сумму, то будем искать минимальную из всех, а затем прибавим значение, которое и так содержится в этой ячейке. Тогда для ячейки AP 42  запишем формулу:

=МИН(AP22:AP41;V42:AO42)+U21

Теперь растянем ее по всем ячейкам нового поля и тогда в ячейке AP 42  будет минимальная сумма, которую можно собрать. (Так как поле мы создавали по диагонали, то тот факт что формулы в остальных ячейках выходят из поля, нас не беспокоит).

Для поиска максимального значение алгоритм действий аналогичный, формула в ячейке AP 42  будет выглядеть следующим образом:

=МАКС(AP22:AP41;V42:AO42)+U21

Ответ: 5773 241

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!