Отбор Всесиба
Ошибка.
Попробуйте повторить позже
Можно ли число представить в виде суммы нескольких попарно различных натуральных чисел таких, что среди всех возможных
попарных сумм этих чисел ровно
различных?
Источники:
Подсказка 1
Попробуем пойти от противного. Тогда 2016 можно представить в виде суммы n попарно различных чисел. Всего пар чисел можно составить n(n-1)/2. Какая нижняя оценка получается на n?
Подсказка 2
Верно! Должно получиться не менее 7 пар, и поэтому n ≥ 5. С другой стороны, наши числа можно упорядочить по возрастанию. Складывая наименьшее число последовательно со всеми остальными, получим n-1 различное число. А можно ли аналогично получить еще суммы, которые отличаются от уже построенных?
Подсказка 3
Можно! Последнее из уже получившихся чисел представляет собой сумму первого и последнего числа. Тогда можно складывать последнее число последовательно со вторым, третьим и так далее. Мы получим n-2 попарно различных числа, отличающихся от первых n-1. Как теперь можно сверху оценить n?
Подсказка 4
Верно! Всего получится 2n-3 различных числа, а их должно быть не больше 7, поэтому n ≥ 5. Выходит, что n = 5! Теперь легко выписать все возможные суммы наших чисел. Всего получится 10 сумм, а среди них только 7 различных. Причем ранее мы уже указали 7 попарно различных сумм! Попробуем теперь рассмотреть три оставшихся. С какими другими суммами они должны совпадать?
Подсказка 5
Ясно, что мы не рассматривали суммы между вторым и третьим, вторым и четвертым, третьим и четвертым числами. Кроме того, понятно, что они попарно различны. Благодаря тому, что остальные 7 сумм нам удалось упорядочить, можно найти среди них суммы, которые должны совпадать с нашими тремя. Как это сделать?
Подсказка 6
Верно! Они должны совпадать с суммами первого и четвертого, первого и пятого, второго и пятого чисел! Тогда можно вычесть равенства и заметить, что все наши числа образуют арифметическую прогрессию. Могло ли так получиться?
Предположим, что можно представить в виде суммы попарно различных натуральных чисел
таких, что среди
всех возможных попарных сумм этих чисел ровно
различных. Общее количество пар из
чисел равно
и должно быть не
меньше
поэтому
С другой стороны, ввиду очевидных неравенств:
имеем и
Следовательно,
и каждая невыписанная попарная сумма чисел
равна одной из семи сумм, рассмотренных в длинном неравенстве. Всего нерассмотренных сумм три:
и все они больше и меньше
По условию, они должны совпадать с суммами
в указанном порядке. Отсюда: следовательно, числа
образуют
арифметическую прогрессию. Тогда их сумма равна
, откуда следует, что число
должно делиться на
—
противоречие.
Нельзя
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!