Тема . Всесиб (Всесибирская открытая олимпиада школьников)

Отбор Всесиба

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб (всесибирская открытая олимпиада школьников)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#98814

Найдите все решения уравнения:

  2     2      2
cos x+ cos 2x+ cos 3x= 1.
Показать ответ и решение

По формулам cos2x= 2cos2x− 1,cos3x= 4cos3x− 3cosx  после преобразований получаем

   6       4      2
8cos x− 10cos x+ 3cos x= 0,

откуда

                 -1-          √3-
cosx= 0 или cosx = ±√2 или cosx= ± 2 .

Следовательно,

x= π2 +πk или x= π4 + π2kили x= ±π6 +πk (k∈ℤ)
Ответ:

 π + πk;π + πk;± π+ πk (k∈ ℤ)
 2    4   2   6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!