Тема . Региональный этап ВсОШ и олимпиада им. Эйлера

Регион 11 класс

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела региональный этап всош и олимпиада им. эйлера
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#122862

В алфавите n> 1  букв; словом является каждая конечная последовательность букв, в которой любые две соседние буквы различны. Слово называется хорошим, если из него нельзя вычеркнуть все буквы, кроме четырех, так, чтобы осталась последовательность вида aabb,  где a  и b  — различные буквы. Найдите наибольшее возможное количество букв в хорошем слове.

Показать ответ и решение

Первое решение. Назовём длиной слова количество букв в нём. Пусть a ,a ,...,a
 1 2    n  — буквы алфавита. Тогда нетрудно проверить, что хорошим является слово

anan−1...a2a1a2a1a2a3...an.

Осталось показать, что нет хороших слов большей длины.

Предположим, что в n  -буквенном алфавите существует хорошее слово длины 2n+ 2.  Тогда какая-то буква (скажем, a )
 1  встречается в нём хотя бы три раза. Отметим её второе (V)  и предпоследнее (P)  вхождение в слово (тогда V  стоит не правее, чем P ).

Любая другая буква встречается не более одного раза перед P,  а также не более одного раза после V,  иначе вычёркиванием можно получить запрещённую последовательность. Значит, каждая из букв a2,...,an  встречается не более двух раз. Более того, если такая буква и встречается дважды, то одно из её вхождений стоит до V,  а другое — после P.

Пусть a1  встречается k≥ 3  раз. Тогда между V  и P  стоят хотя бы k − 3  буквы, отличных от a1  (по одной между соседними вхождениями a1),  и все такие буквы встречаются ровно по разу. Выделим k − 3  таких буквы. Остальные n− k+ 2  буквы могут встречаться максимум по два раза. Поэтому длина слова не превосходит

k+ (k− 3)⋅1+ (n − k +2)⋅2= 2n+ 1,

что противоречит нашему предположению.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение. Приведём другое доказательство того, что длина хорошего слова не превосходит 2n+1.  Индукция по n ≥2.  В базовом случае n= 2  буквы в слове чередуются, и слово длины хотя бы 6  содержит фрагмент вида ababab,  из которого вычёркиванием букв можно получить aabb.  Для перехода предположим, что в n  -буквенном алфавите есть хорошее слово длины, не меньшей 2n+ 2.  Тогда какая-то буква a  встречается в этом слове хотя бы три раза. Предположим, что букв, встречающихся хотя бы 3  раза, две — a  и b.  Пусть, без ограничения общности, второе вхождение a  стоит раньше второго вхождения b;  тогда вычёркиванием букв можно получить слово aabb,  что невозможно. Значит, буква a  встречается в слове k≥3  раз, а все остальные — максимум по два раза. Тогда длина слова не меньше, чем 2n+ 2,  и не больше, чем k+ 2(n − 1),  откуда k ≥4.  Между вторым и третьим вхождением буквы a  есть какая-то буква c.  Эта буква не может встречаться в других местах: если она встречается после второго вхождения a,  то вычёркиванием букв можно получить aacc,  а если до него — то ccau  (поскольку k ≥4).  Пусть соседи буквы c  различны. Тогда, удалив её из слова, мы получим хорошее слово в (n− 1)  -буквенном алфавите (без буквы c).  Длина этого слова будет не меньше 2n+ 1= 2(n − 1)+ 3,  что противоречит индукционному предположению. Если же соседи буквы c  одинаковы, удалим из слова c  и букву перед ней; тогда на этом «стыке» останутся различные буквы. Поэтому мы опять получим хорошее слово в (n− 1)  -буквенном алфавите, длина которого не меньше, чем 2(n− 1)+2;  это опять же невозможно по индукционному предположению.

Ответ:

 2n+ 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!