Системы на Турломе
Ошибка.
Попробуйте повторить позже
Пусть — положительные действительные числа такие, что
Найдите .
Источники:
Подсказка 1
Для начала попробуйте в обоих уравнениях в одной части оставить корни от одной и той же переменной и возвести в квадрат.
Подсказка 2
Отлично! Теперь мы можем избавиться от второй переменной, выразив её в обоих уравнениях системы через первую и записав за счёт этого новое равенство для одной переменной.
Подсказка 3
Попробуйте снова перенести одно выражение с корнем в одну часть, а всё остальное в другую и возвести в квадрат. Так мы получим квадратное уравнение относительно корня из x.
Запишем равенства в следующем виде:
Учитывая ограничение возведём их в квадрат и выразим :
Получаем уравнение
После раскрытия полных квадратов и приведения подобных оно примет вид
После возведения в квадрат получим уравнение
Решая его как квадратное относительно , получаем
откуда
По ОДЗ оба корня проходят, но при первом корне , значит он не подходит.
Ошибка.
Попробуйте повторить позже
Действительные числа и таковы, что
Какое наибольшее значение может принимать произведение
Источники:
Подсказка 1
Давайте запишем наше условие как системку, что два левых выражения равны 23. Понятно, что x, y не нули. Поэтому что можно сделать в системе, чтобы получить где-то xy?
Подсказка 2
Домножить одно из уравнений на x, а другое на y! И выйдет что-то вида xy+3 = 23x, xy+5 = 23y. А что стоит сделать теперь, чтобы вообще все было только через xy?
Подсказка 3
Перемножить два этих уравнения) Дальше делаем замену и решаем задачу окончательно!
При условии того, что обе переменные не равны нулю, имеем:
Значит:
Пусть
Тогда получим:
Докажем, что наибольший корень реализуется. Действительно, из обоих уравнений получаем подставляя Они подходят, так как наши преобразования были равносильны с учетом того, что
Ошибка.
Попробуйте повторить позже
Действительные числа и таковы, что а Какие значения может принимать выражение Укажите все возможные ответы и докажите, что других нет.
Источники:
Подсказка 1
У нас есть система уравнений, казалось бы. И мы хотели бы ее решить. Однако, решать в лоб - долго и можно ошибиться. Нам нужно как-то составить из этой системы уравнение на x. При этом, y в нашей системе в одной форме(то есть, на него просто умножают все выражение в конце, на какую то степень). Как тогда можно составить уравнение, в котором есть только х?
Подсказка 2
Верно, возведем первое в куб. Тогда, у нас получится (xy)^3 * (x + 1)^3 = 6^3, (xy)^3 * (x^3 + 1) = 126. Поделим первое на второе и получим уравнение на х (квадратное, ведь x + 1 сократился, когда поделили). Значит, нашли корни. Осталось найти y и подставить в искомое выражение.
Возведём первое равенство в куб и поделим на второе:
Отсюда при условии получаем
Решая это квадратное уравнение, получаем или Из первого равенства тогда или соответственно.
Подставляем получившиеся значения в требуемое выражение: