Тема ФЕТТ (Формула Единства / Третье Тысячелетие)

Стереометрия на ФЕ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела фетт (формула единства / третье тысячелетие)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#68182

На плоскости в ортогональной проекции изображена правильная пирамида SABC  (с основанием ABC  ) и высота AH  грани SAB,  как показано на рисунке.

PIC

Как с помощью циркуля и линейки построить изображение центра сферы, описанной возле пирамиды?

Источники: ФЕ-2023, 11.4 (см. www.formulo.org)

Показать ответ и решение

PIC

Пусть M  - середина AC,  N  - центр основания ABC.  Тогда центр описанной сферы лежит на SN  (поскольку пирамида правильная). Проекция M  строится как середина проекции AC,  а проекция N  – как точка, делящая проекцию BM  в отношении 2:1.  Обозначим через m  прямую, параллельную MH  и проходящую через середину SB.  Она проходит через центр описанной сферы: AH  и CH  перпендикулярны SB,  так что m  перпендикулярна SB,  а также m  пересекает SN.  Проекция m  строится как параллельный перенос проекции MH,  проходящий через середину проекции SB.  Эта проекция пересекает проекцию SN  ровно в проекции центра описанной сферы.

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 2#74785

В прямоугольном параллелепипеде ABCDA ′B′C′D ′ отметили середину O  медианы AM  треугольника AB ′D ′ . Оказалось, что эта точка удалена от прямых    ′  ′
AB ,AD и от грани ABCD  на расстояние 1 . Найдите объём параллелепипеда.

Источники: ФЕ-2022, 11.2 (см. www.formulo.org)

Показать ответ и решение

PIC

Пусть X  и Y  - это основания перпендикуляров, опущенных из O  на AB′ и AD′ . Точка O  на медиане AM  равноудалена от сторон треугольника AB ′D ′ , поэтому она лежит также на биссектрисе; значит, медиана является биссектрисой, поэтому AB ′ =AD ′.

△ADD ′ = △ABB ′ по катету и гипотенузе, тогда AB =AD.  Обозначим длины отрезков AB = AD  и AA ′ через x  и z  . Тогда

                             √ ---     √-------
AB′ = AD′ = ∘x2-+z2,B′M =D ′M =--2x2,AO = -2x2+-4z2-
                               2           4

. Taкжe

            ′                                ∘ -2-2----2-
OX  =OY = B-MAB⋅A′O-(из подобия △AOX и △AB ′M )= 14 x-(xx2++2z2z-)

Расстояние от точки O  до основания ABCD  в 2 раза меньше, чем расстояние от M  до основания ABCD,  то есть OX = z2 = 1  , откуда легко получается z =2  и

x2(x2+ 8)= 16(x2+ 4)

то есть      ------
x =∘ 4+ 4√5  . Объём равен x2z = 8+8√5  .

Ответ:

 8+ 8√5

Рулетка
Вы можете получить скидку в рулетке!