Тема ПитерГор (Санкт-Петербургская олимпиада)

Планиметрия на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 21#71159Максимум баллов за задание: 7

Точка M  — середина дуги BAC  описанной окружности треугольника ABC,I  — центр его вписанной окружности, L  — основание биссектрисы AL.  Прямая MI  пересекает описанную окружность в точке K.  Описанная окружность треугольника AKL  пересекает прямую BC  вторично в точке P.  Докажите, что         ∘
∠AIP =90 .

PIC

Источники: СпбОШ - 2014, задача 11.7(см. www.pdmi.ras.ru)

Подсказки к задаче

Подсказка 1

∠PIB — не особо понятный, да и прямая PI не особо "красивая", а должно быть наоборот. Что в таком случае можно сделать? Какой метод применить?

Подсказка 2

Подмена точки! Определим P' как пересечение перпендикуляра к AL в точке I и прямой BC. Хотим доказать, что P' = P. Как это сделать? (вспомните условие)

Подсказка 3

Именно! Доказать вписанность ALKP'. Также, не умаляя общности, будем считать, что AB < AC, тогда P' лежит на лучше CB за точку B. Что для этого нужно сделать?

Подсказка 4

Доказать равенство вписанных углов. Подумайте, к каким углам проще всего привязаться?

Подсказка 5

Да, это углы LAK и LP'K. Чтобы удобно оперировать углами, обозначим за N точку пересечения AI и описанной окружности △ABC. Какой вывод можно сделать про отрезок MN?

Подсказка 6

Осознайте, что это диаметр. Тогда несложным счётом углов докажите, что P'I касается описанной окружности △KIN — ω₁, а также окружности с центром в N и радиусом NB — ω₂ (воспользуйтесь леммой о трезубце).

Подсказка 7

Итого, P'I — общая касательная к α и β. Что это значит в "радикальных терминах"?

Подсказка 8

Верно! P'I — радикальная ось ω₁ и ω₂, а BC — радикальная ось ω₂ и описанной △АВС. Тогда чем является точка P?

Подсказка 9

Верно! Радикальным центром ω₁, ω₂ и описанной △АВС. Осталось что-то понять про точки K, N, P' и немного посчитать уголки и дуги. Уверены, вы справитесь! Успехов!

Показать доказательство

Решение 1.
Обозначим через N  середину дуги BKC,  а через  ′
P — точку пересечения прямой, проходящей через I  перпендикулярно AI,  с прямой BC.  Докажем, что  ′
P = P.  Для этого докажем, что четырёхугольник      ′
ALKP вписанный, проверив равенство углов            ′
∠LAK  =∠LP K.
Не умаляя общности, можно считать, что AB < AC  (тогда точка  ′
P рассположена на луче CB  ). Заметим, что      ′
∠KIP  = 90 − ∠KIN = ∠KNI  (так как MN  — диаметр), поэтому описанная окружность ω1  треугольника KIN  касается прямой    ′
 P I  в точке I.  Поскольку     ′
∠NIP = 90,  описанная окружность ω2  треугольника BIC  (с центром в N  ) тоже касается  ′
P I  в точке I.  Следовательно, точка  ′
P — радикальный центр ω1,ω2  и описанной окружности ABC.  Но тогда точки  ′
P ,K, N  лежат на одной прямой, откуда

                             1 ⌣   1 ⌣
∠LAK = ∠NCK  =∠NCB  − ∠KCB = 2 CN −2 BK= ∠LP ′K.

PIC

Решение 2.
Не умаляя общности, можно считать, что AB < AC.  Обозначим через N  середину дуги BKC.  Тогда

∠P KM = ∠PKA + ∠AKM  = ∠PLA +∠AKM  =

= ∠LAC +∠LCA + ∠AKM  = ∠BAN + ∠BCA +∠AKM  = 90∘,

поскольку сумма дуг описанной окружности ABC,  на которые опираются углы в последней сумме, равна 180∘.  Так как ∠MKN  = 90∘ (он опирается на диаметр), то точки P,K,N  лежат на одной прямой. Далее, в силу подобия треугольников NBL  и NAB  выполняется равенство NNLB-= NNBA-,  откуда NB2 = NL ⋅NA.  Но в силу леммы о трезубце, NB = NI,  поэтому NI2 =NL ⋅NA = NK ⋅NP,  откуда NNKI-= NNIP-  и треугольники NKI  и NIP  подобны. Но тогда ∠NIP = ∠NKI = 90∘.

PIC

Ошибка.
Попробуйте повторить позже

Задача 22#97375Максимум баллов за задание: 7

Будем называть четырехугольник равнодиагональным, если у него равны диагонали. Отрезок, соединяющий середины двух противоположных сторон выпуклого четырехугольника ABCD,  делит его на два равнодиагональных четырехугольника. Докажите, что четырехугольник ABCD  сам равнодиагональный.

Источники: СПБГОР - 2013, 10.2(см. www.pdmi.ras.ru)

Подсказки к задаче

Подсказка

Как переписать условие задачи на язык векторов? Введите векторы сторон, из них легко выразить условие задачи. Как из двух условий получить утверждение задачи?

Показать доказательство

Первое решение

Без ограничений общности будем считать, что указанный отрезок соединяет середины сторон AB  и CD.  Введем вектора a,b,c,d  таким образом, что

−→     −−→     −−→     −−→
AB =2a,BC = 2c,CD = 2b,DA = 2d

PIC

Поскольку диагонали образованных четырехугольников равны имеют место равенства

(2c+a)2 = (b+ 2c)2;(a +2d)2 =(2d+ b)2

Здесь и далее, для любых двух векторов u,v :u⋅v = (u,v).  Таким образом, вычитая второе равенство из первого, получим

2(a− b)(a +b+ c)=2(a− b)(a+ b+d)

(a− b)(c− d)= 0

Поскольку a+ b+ c+d =0,  имеем

(a− b)(a+ b+2c)= 0

(a+c)2 = (b+ c)2

следовательно, диагонали исходного четырехугольника так же равны.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение

Пусть K  и M  — середины сторон соответственно AB  и CD  четырёхугольника ABCD.  Из признака равенства треугольников по двум сторонам и медиане, проведённой к третьей следует равенство треугольников CKD  и BMA,  поэтому CD = AB,  а значит, CM = BK.  Треугольники KBC  и MCB  равны по трём сторонам, поэтому ∠BKC  =∠BMC.  Тогда

∠AKC  = 180∘− ∠BKC  =180∘− ∠BMC = ∠BMD

Тогда треугольники AKC  и DMB  равны по двум сторонам и углу между ними, следовательно, AC = BD.

Ошибка.
Попробуйте повторить позже

Задача 23#98461Максимум баллов за задание: 7

В неравнобедренном треугольнике ABC  проведены биссектрисы AA
  1  и CC ,
   1  кроме того, отмечены середины K  и L  сторон AB  и BC  соответственно. На прямую CC1  опущен перпендикуляр AP,  а на прямую AA1   — перпендикуляр CQ.  Докажите, что прямые KP  и LQ  пересекаются на стороне AC.

Подсказки к задаче

Подсказка 1

У нас есть биссектрисы, есть середины двух сторон, что было бы удобнее отметить для "полноты картинки"?

Подсказка 2

Отметим середину M третьей стороны! Как её можно связать с точками на рисунке?

Подсказка 3

KM и LM проходят через P и Q соответсвенно!

Показать доказательство

Отметим середину M  стороны AC.

PIC

Заметим, что по лемме 255 точки P  и Q  лежат на прямых KM  и LM  соответственно. Следовательно, прямые KP  и LQ  пересекают в точке M,  лежащей на AC.

Ошибка.
Попробуйте повторить позже

Задача 24#98720Максимум баллов за задание: 7

Диагональ AC  выпуклого четырёхугольника ABCD  делится точкой пересечения диагоналей пополам. Известно, что ∠ADB  =2∠CBD.  На диагонали BD  нашлась точка K,  для которой CK = KD + AD.  Докажите, что ∠BKC  =2∠ABD.

Подсказки к задаче

Подсказка 1

В задачах, где один угол в два раза больше другого, бывает полезно найти равнобедренный треугольник, у которого угол при основании равен меньшему из указанных углов, тогда внешний угол при вершине, противоположной основанию, будет в два раза больше и, следовательно, равен большему из указанных.

Подсказка 2

На продолжении отрезка KD за точку D отложим отрезок DE, равный AD. Что можно сказать про прямые AE и BC?

Подсказка 3

Они параллельны. Как можно воспользоваться тем, что AC делится точкой пересечения диагоналей пополам?

Подсказка 4

Из этого и параллельности прямых AE и CB сразу следует, что ABCE — параллелограмм. Что при этом можно сказать про треугольник CEK?

Подсказка 5

Из указанного в условии соотношения на отрезки получим EK = КС, следовательно, EKC — равнобедренный. Как из этого следует требуемое соотношение на углы?

Показать доказательство

Пусть O  — точка пересечения диагоналей четырехугольника ABCD,  тогда AO = CO.

На продолжении отрезка KD  за точку D  отложим отрезок DE,  равный AD.  Тогда CK = KE.

PIC

Пусть ∠CBD = α.  Тогда по условию ∠ADB = 2α.  Так как ∠ADB  — внешний угол равнобедренного треугольника ADE,  то ∠AEB  =∠AED  =α = ∠CBE.  Следовательно, AE ∥BC.  Тогда ∠EAC  =∠BCA.  Таким образом, треугольники AOE  и COB  равны по второму признаку. В равных треугольниках соответственные элементы равны, в частности, AE = BC.  Тогда ABCE  — параллелограмм. Значит, ∠CEB  =∠ABD  как накрест лежащие.

Так как ∠BKC  — внешний угол равнобедренного треугольника CKE,  то

∠BKC  =2∠CEB = 2∠ABD
Рулетка
Вы можете получить скидку в рулетке!