Тема . Остатки и сравнения по модулю

Показатели и первообразные корни

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#78919

Даны взаимно простые числа a  и b.  Докажите, что для любого нечетного делителя d  числа a2n + b2n  число d− 1  делится на  n+1
2   .

Показать доказательство

Пусть d  — нечетный делитель числа a2n +b2n.  В силу взаимной простоты чисел a  и b  будет также верно, что d  взаимно просто с    a  и b.  Тогда по модулю числа d  остатки a,b  будут обратимы.

Пусть c  — такое число, что c⋅b ≡1 (mod d).  Тогда

2n   2n          2n
a  +b  ≡ 0 =⇒ (ac)  ≡ (− 1)  (mod d)

Тогда (ac)2n+1 ≡ 1,  то есть число ac  имеет показатель по модулю d  равный 2n+1  (так как (ac)2n+1 ≡1  означает, что 2n+1  делится на показатель, но (ac)2n ≡ −1  говорит о том, что меньшие степени двойки не будут показателем)

Если d  — простое, то (ac)d−1 ≡1  и тогда (d − 1)..2n+1
     .  делится на показатель. Если d  составное, то оно раскладывается, как     α1   αk
d =p1 ...pk  при этом предыдущие равенства можно рассмотреть по модулю pi,  тогда           n+1
pi ≡1 (mod 2 )  для всех простых делителей числа d.  Тогда          n+1
d≡ 1 (mod 2 ),  то есть      .. n+1
(d− 1).2  .

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!