Неравенства на ИТМО
Ошибка.
Попробуйте повторить позже
Положительные числа и
таковы, что
и
. Докажите неравенство
Источники:
Подсказка 1
Давайте для начала просто внимательно посмотрим на наше неравенство. Что мы можем сказать об этих выражениях? О коэффициентах? О переменных?
Подсказка 2
Интересно, что коэффициенты из левой части в сумме дают 1. Выглядит прямо как среднее арифметическое для чисел х, х, х, у, у и z... А тут ещё и неравенства...
Подсказка 3
Да, давайте применим здесь неравенство для среднего арифметического и геометрического! Преобразуем их с помощью известных условий и будем держать в голове, что x не больше z!
Заметим, что сумма коэффициентов в левой части равна единице. Применим неравенство для среднего арифметического и среднего
геометрического для чисел :
Поскольку и, следовательно,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!