Системы на Иннополисе
Ошибка.
Попробуйте повторить позже
Дана система уравнений, описывающая положение и ориентацию исполнительного механизма робота на плоскости вида
Найдите конфигурацию ( ) для заданного положения и ориентации
, а также известных
. При каких
задача имеет решение?
Источники:
Изобразим на координатной плоскости трехзвенный манипулятор (звенья длин , первое звено
которого — отрезок с началом
в
, а третье — отрезок с концом
. Тогда
— угол, образованный первым звеном и осью
и
— углы соответственно
между первым и вторым, и вторым и третьим звеньями манипулятора, а
— угол между направленным третьим звеном и положительным
направлением оси
Изобразим окружности и
с центрами в точках
и
и радиусами
и
соответственно. Вектор
(третье звено
манигулятора) образует известный угол
— таким образом, точка
имеет координаты
. Изобразим окружность
с центром в точке
и радиусом
Количество общих точек окружностей и
равно количеству решений задачи. Задача не имеет решений, если треугольника (пусть
и вырожденного) со сторонами
не существует.
Найдем одно из решений задачи. Рассмотрим — второе звено манипулятора). В нём
Зная стороны треугольника, найдем его углы (используя теоремы синусов и косинусов). Так,
причём
Аналогично,
Наконец,
Задача имеет решение, когда существует треугольник с длинами сторон ,
и
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!